What are the points I must remember during the planning phase of the project to have a really firm foundation?
Thanks
Edit: I mean more specifically related to coding. (I don't mean the budgets etc etc).
For example: Where can we use generics,reflection or concepts in C#
During the planning phase you need to:
Define the problem your solving
Validate the problem actually exists
Define a solution with your customer
(This is more of a starting point, I
recommend constant user feedback
into your lifecycle but you need to
start somewhere)
Define the scope of the project, including features, cost / budget and time
Communicate..Communicate..Communicate..
1) Know your deadlines
2) Know your budget
If you let either one of these get away on you, you are setting yourself up for a disaster.
Check out Steve McConnell's book on Software Estimation. It will help you consider all area's before getting started. For if you have to estimate it then you should know what has to be done.
You should also consider reading Code Complete.
Software Estimations, Code Complete
Related
My team has a plan to apply optaplanner to existing system.
Existing system has its own rule-sets.
it tries own rule-sets one by one and pick the one as best result.
We want to start from its result as heuristics
and start to solve the problem as meta-heuristics.
We have reviewed optaplanner manual especially in repeated planning section.
but we can't find the way.
Is there a way to accept existing system's result?
your cooperation would be highly appreciated
Best regards.
For OptaPlanner, it makes no difference where the input solution comes from. Consider the following code:
MyPlanningSolution solution = readSolution();
Solver<MyPlanningSolution> solver = SolverFactory.create(...)
.buildSolver();
solver.solve(solution);
Notice how solution comes from a custom method, readSolution(). Whether that method generates the initial solution randomly, reads it from a file, from a database etc., that does not matter to the solver. It also does not matter if it is initialized or not - construction heuristic, if configured, will just skip the initialized entities.
That means you have absolute freedom in how you create your initial solution and, to the solver, they all look the same.
I want to do a statistic about resource utilization! I know that with 'ResourcePool.utilization()' I can do it! But the problem is that the resource work, by a schedule, for 8 hours..but the statistic is over all day! There is a way to investigate the utilization only in their working hours?
Thank u
Miriana
No. You have to record your own statistics manually. This can be done via variables, datasets, etc. But there is no 1 way and it depends on your actual model setup.
Suggest you check lots of the example models that comes with AnyLogic, quite a few are also logging custom statistics. Then try to duplicate that :)
I am trying to match objects based on predefined user preferences. A simple example would be finding best matching vechicle.
Lets say a user 'Tom' is offered a rented vehicle for travel based on his predefined preferences. In this case, the predefined user preferences will be -
** Pre-defined user preferences for Tom:
PreferredVehicle (Make='ANY', Type='3-wheeler/4-wheeler',
Category='Sedan/Hatchback', AC/Non-AC='AC')
** while the 10 available vehicles are -
Vechile1(Make='Toyota', Type='4-wheeler', Category='Hatchback', AC/Non-AC='AC')
Vechile2(Make='Tata', Type='3-wheeler', Category='Transport', AC/Non-AC='Non-AC')
Vechile3(Make='Honda', Type='4-wheeler', Category='Sedan', AC/Non-AC='AC')
;
;
and so on upto 'Vehicle10'
All I want to do is - choose a vehicle for Tom that best matches his preferences and also probably give him choices in order, i.e. best match first.
Questions I have :
Can this be done with Mahout Taste?
If yes, can someone please point me to some example code where I can start quickly?
A recommender may not be the best tool for the job here, for a few reasons. First, I don't expect that the best answers are all that personal in this domain. If I wanted a Ford Focus, the best alternative you have is likely about the same for most every user. Second, there is not much of a discovery problem here. I'm searching for a vehicle that meets certain needs; I don't particularly want or need to find new and unknown vehicles, like I would for music. Finally you don't have much data per user; I assume most users have never rented before, and very few have even 3+ rentals.
Can you throw this data at a recommender anyway? Sure, try Mahout Taste (I'm the author). If you have the book Mahout in Action it will walk you through it. Since it's non-rating data, I can also recommend the successor project, Myrrix (http://myrrix.com) as it will be easier to set up and run. You can at least evaluate the results to see if it's anywhere near useful.
Either way, your work will just be to make a CSV file of "userID,vehicleID" pairs from your data and feed it in. Then it will give you vehicle IDs as recommendations for any user ID.
But, I imagine you will do much better to analyze what people picked when the car wasn't available, and look at the difference, and learn which attributes they are most and least likely to be sacrificed, and learn to score the alternatives that way. This is entirely feasible since this data set is small, and because you have rich item attribute data.
When defining a model in ACT-R, I would like to set for each of my productions, a different firing time.
How could I do that?
Thanks!
Not too many ACT-R modelers here, huh?
First off, keep a copy of the ACT-R reference manual handy. This a great resource that answers 90% of the questions you will have.
You can set a production's action time using (spp <production-name> :at <time>) or you can set the default action time using (sgp :dat <time>). Times are in seconds, so the default is .05.
That being said, you should modify these parameters very rarely, if at all. The whole point of production firing time is that it's supposed to represent a psychological constant. If you're tinkering with this, your model may fit the data but is less likely to be psychologically plausible. And if you don't care about psychological plausibility, then you shouldn't be using ACT-R! But there's an exception to every rule, so proceed with caution.
While this is a bit old, this question still comes up fairly high on Google when searching for ACT-R production firing times, so I feel it is acceptable to post a response.
As a published ACT-R modeler with 4 years under my belt, I would like to echo Jeff's statements. You very, very rarely modify most ACT-R parameters for the exact reason Jeff stated. All aspects of ACT-R and the amount of time certain modules take to fire are empirically backed by many studies. If you start changing these, then your model, like Jeff said, is completely implausible. While some modelers do change these values, they have empirical data to back up their reasons for changing any parameters.
An initial draft of requirements specification has been completed and now it is time to take stock of requirements, review the specification. Part of this process is to make sure that there are no sizeable gaps in the specification. Needless to say that the gaps lead to highly inaccurate estimates, inevitable scope creep later in the project and ultimately to a death march.
What are the good, efficient techniques for pinpointing missing and implicit requirements?
This question is about practical techiniques, not general advice, principles or guidelines.
Missing requirements is anything crucial for completeness of the product or service but not thought of or forgotten about,
Implicit requirements are something that users or customers naturally assume is going to be a standard part of the software without having to be explicitly asked for.
I am happy to re-visit accepted answer, as long as someone submits better, more comprehensive solution.
Continued, frequent, frank, and two-way communication with the customer strikes me as the main 'technique' as far as I'm concerned.
It depends.
It depends on whether you're being paid to deliver what you said you'd deliver or to deliver high quality software to the client.
If the former, simply eliminate ambiguity from the specifications and then build what you agreed to. Try to stay away from anything not measurable (like "fast", "cool", "snappy", etc...).
If the latter, what Galwegian said + time or simply cut everything not absolutely drop-dead critical and build that as quickly as you can. Production has a remarkable way of illuminating what you missed in Analysis.
evaluate the lifecycle of the elements of the model with respect to a generic/overall model such as
acquisition --> stewardship --> disposal
do you know where every entity comes from and how you're going to get it into your system?
do you know where every entity, once acquired, will reside, and for how long?
do you know what to do with each entity when it is no longer needed?
for a more fine-grained analysis of the lifecycle of the entities in the spec, make a CRUDE matrix for the major entities in the requirements; this is a matrix with the operations/applications as the rows and the entities as the columns. In each cell, put a C if the application Creates the entity, R for Reads, U for Updates, D for Deletes, or E for "Edits"; 'E' encompasses C,R,U, and D (most 'master table maintenance' apps will be Es). Then check each column for C,R,U, and D (or E); if one is missing (except E), figure out if it is needed. The rows and columns of the matrix can be rearranged (manually or using affinity analysis) to form cohesive groups of entities and applications which generally correspond to subsystems; this may assist with physical system distribution later.
It is also useful to add a "User" entity column to the CRUDE matrix and specify for each application (or feature or functional area or whatever you want to call the processing/behavioral aspects of the requirements) whether it takes Input from the user, produces Output for the user, or Interacts with the user (I use I, O, and N for this, and always make the User the first column). This helps identify where user-interfaces for data-entry and reports will be required.
the goal is to check the completeness of the specification; the techniques above are useful to check to see if the life-cycle of the entities are 'closed' with respect to the entities and applications identified
Here's how you find the missing requirements.
Break the requirements down into tiny little increments. Really small. Something that can be built in two weeks or less. You'll find a lot of gaps.
Prioritize those into what would be best to have first, what's next down to what doesn't really matter very much. You'll find that some of the gap-fillers didn't matter. You'll also find that some of the original "requirements" are merely desirable.
Debate the differences of opinion as to what's most important to the end users and why. Two users will have three opinions. You'll find that some users have no clue, and none of their "requirements" are required. You'll find that some people have no spine, and things they aren't brave enough to say out loud are "required".
Get a consensus on the top two or three only. Don't argue out every nuance. It isn't possible to envision software. It isn't possible for anyone to envision what software will be like and how they will use it. Most people's "requirements" are descriptions of how the struggle to work around the inadequate business processes they're stuck with today.
Build the highest-priority, most important part first. Give it to users.
GOTO 1 and repeat the process.
"Wait," you say, "What about the overall budget?" What about it? You can never know the overall budget. Do the following.
Look at each increment defined in step 1. Provide a price-per-increment. In priority order. That way someone can pick as much or as little as they want. There's no large, scary "Big Budgetary Estimate With A Lot Of Zeroes". It's all negotiable.
I have been using a modeling methodology called Behavior Engineering (bE) that uses the original specification text to create the resulting model when you have the model it is easier to identify missing or incomplete sections of the requirements.
I have used the methodolgy on about six projects so far ranging from less than a houndred requirements to over 1300 requirements. If you want to know more I would suggest going to www.behaviorengineering.org there some really good papers regarding the methodology.
The company I work for has created a tool to perform the modeling. The work rate to actually create the model is about 5 requirements for a novice and an expert about 13 requirements an hour. The cool thing about the methodolgy is you don't need to know really anything about the domain the specification is written for. Using just the user text such as nouns and verbs the modeller will find gaps in the model in a very short period of time.
I hope this helps
Michael Larsen
How about building a prototype?
While reading tons of literature about software requirements, I found these two interesting books:
Problem Frames: Analysing & Structuring Software Development Problems by Michael Jackson (not a singer! :-).
Practical Software Requirements: A Manual of Content and Style by Bendjamen Kovitz.
These two authors really stand out from the crowd because, in my humble opinion, they are making a really good attempt to turn development of requirements into a very systematic process - more like engineering than art or black magic. In particular, Michael Jackson's definition of what requirements really are - I think it is the cleanest and most precise that I've ever seen.
I wouldn't do a good service to these authors trying to describe their aproach in a short posting here. So I am not going to do that. But I will try to explain, why their approach seems to be extremely relevant to your question: it allows you to boil down most (not all, but most!) of you requirements development work to processing a bunch of check-lists* telling you what requirements you have to define to cover all important aspects of the entire customer's problem. In other words, this approach is supposed to minimize the risk of missing important requirements (including those that often remain implicit).
I know it may sound like magic, but it isn't. It still takes a substantial mental effort to come to those "magic" check-lists: you have to articulate the customer's problem first, then analyze it thoroughly, and finally dissect it into so-called "problem frames" (which come with those magic check-lists only when they closely match a few typical problem frames defined by authors). Like I said, this approach does not promise to make everything simple. But it definitely promises to make requirements development process as systematic as possible.
If requirements development in your current project is already quite far from the very beginning, it may not be feasible to try to apply the Problem Frames Approach at this point (although it greatly depends on how your current requirements are organized). Still, I highly recommend to read those two books - they contain a lot of wisdom that you may still be able to apply to the current project.
My last important notes about these books:
As far as I understand, Mr. Jackson is the original author of the idea of "problem frames". His book is quite academic and theoretical, but it is very, very readable and even entertaining.
Mr. Kovitz' book tries to demonstrate how Mr. Jackson ideas can be applied in real practice. It also contains tons of useful information on writing and organizing the actual requirements and requirements documents.
You can probably start from the Kovitz' book (and refer to Mr. Jackson's book only if you really need to dig deeper on the theoretical side). But I am sure that, at the end of the day, you should read both books, and you won't regret that. :-)
HTH...
I agree with Galwegian. The technique described is far more efficient than the "wait for customer to yell at us" approach.