I have a static method that creates an instance of the class and puts it in the static variable. I am wondering what the proper way of memory management is in this situation.
You can't put it in the dealloc-method, because although it can access the static variable any instance method that is created that get's released will also release the sharedInstance.
I guess there might be an option of creating a static destroy method which will manualy release the memory and can be called by the user from appWillTerminate, but that seems a bit odd.
So, again, the question:
What is the proper way of releasing a static variable?
// MyClass.m
#import "MyClass.h"
static MyClass *myClass; // How to properly do memory management
#implementation MyClass
+ (MyClass *)sharedMyClass {
if (myClass == nil) myClass = [[MyClass alloc] init];
return myClass;
}
#end
You can either not release them, which is fine since the app is shutting down anyway. Cocoa on the iPhone already does this, it doesn't completely delete everything, it just lets the app get blown away.
Or you can delete it from appWillTerminate or some other shutdown function.
You'll want to have a look at "Creating a Singleton" on the iPhone dev center to see how to properly implement that pattern. You won't be releasing your singleton, just letting it die when the application exits.
Also, if you're multithreaded you'll probably want to wrap that alloc in a #synchronize( self ) {}
Here is the full text:
Some classes of Foundation and the
Application Kit create singleton
objects. In a “strict” implementation,
a singleton is the sole allowable
instance of a class in the current
process. But you can also have a more
flexible singleton implementation in
which a factory method always returns
the same instance, but you can
allocate and initialize additional
instances.The NSFileManager class fits
this latter pattern, whereas the
UIApplication fits the former. When
you ask for an instance of
UIApplication, it passes you a
reference to the sole instance,
allocating and initializing it if it
doesn’t yet exist.
A singleton object acts as a kind of
control center, directing or
coordinating the services of the
class. Your class should generate a
singleton instance rather than
multiple instances when there is
conceptually only one instance (as
with, for example, NSWorkspace). You
use singleton instances rather than
factory methods or functions when it
is conceivable that there might be
multiple instances one day.
To create a singleton as the sole
allowable instance of a class in the
current process, you need to have an
implementation similar to Listing
2-15. This code does the following:
Declare a static instance of your
singleton object and initialize it to
nil. In your class factory method for
the class (named something like
“sharedInstance” or “sharedManager”),
generate an instance of the class but
only if the static instance is nil.
Override the allocWithZone: method to
ensure that another instance is not
allocated if someone tries to allocate
and initialize an instance of your
class directly instead of using the
class factory method. Instead, just
return the shared object. Implement
the base protocol methods
copyWithZone:, release, retain,
retainCount, and autorelease to do the
appropriate things to ensure singleton
status. (The last four of these
methods apply to memory-managed code,
not to garbage-collected code.)
Listing 2-15 Strict implementation of
a singleton static MyGizmoClass
*sharedGizmoManager = nil;
+ (MyGizmoClass*)sharedManager {
if (sharedGizmoManager == nil) {
sharedGizmoManager = [[super allocWithZone:NULL] init];
}
return sharedGizmoManager; }
+ (id)allocWithZone:(NSZone *)zone {
return [[self sharedManager] retain]; }
- (id)copyWithZone:(NSZone *)zone {
return self; }
- (id)retain {
return self; }
- (NSUInteger)retainCount {
return NSUIntegerMax; //denotes an object that cannot be released }
- (void)release {
//do nothing }
- (id)autorelease {
return self; }
If you want a singleton instance (created and
controlled by the class factory
method) but also have the ability to
create other instances as needed
through allocation and initialization,
do not override allocWithZone: and the
other methods following it as shown in
Listing 2-15.
UPDATE: There is now a much easier way to create a singleton
+ (MyClass*)sharedInstance
{
static MyClass* _sharedInstance = nil;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
_sharedInstance = [[MyClass alloc] init];
});
return _sharedInstance;
}
Using this new style you don't need to worry about the #syncronize or overriding the memory management methods.
static variable or class remains in memory Untill lifetime of your application
So if it is UnUsed then make
Your_variable = nil;
while declaring use static _datatype variable = nil;
which help while initializing .. and memory management
///**************************
// MyClass.m
#import "MyClass.h"
static MyClass *myClass = nil;
#implementation MyClass
+ (MyClass *)sharedMyClass {
if (myClass == nil)
myClass = [[MyClass alloc] init];
return myClass;
}
#end
Related
f. e. (just for understanding messages mechanism more clear) I have class
MyClass.h
#interface MyClass : NSObject {
int ivar1;
int ivar2;
}
+ (id)instance;
#end
MyClass.m
static MyClass* volatile _sInstance = nil;
#implementation MyClass
+ (id)instance {
if (!_sInstance) {
#synchronized(self) {
if (!_sInstance) {
_sInstance = [[super allocWithZone:nil] init];
}
}
}
return _sInstance;
}
#end
What will be send in objc_msgSend in fact when calling [super allocWithZone:nil] ?
objc_msgSend([MyClass class], "allocWithZone", nil) or objc_msgSend([NSObject class], "allocWithZone", nil) ?
In practice I think that called objc_msgSend(self, "allocWithZone", nil) and in that case self == [MyClass class];
I want to be sure that memory for ivar1 and ivar2 will be allocated.
Is it true, that when we call super in class method, in objc_msgSend() function the "self" argument is passed, that in our case is class object of child? And allocWithZone will "look" at the child class object to see how much memory should be allocated for ivar1 and ivar2.
Thanks!
Any message to super is translated by the compiler to objc_msgSendSuper (not objc_msgSend). The first argument is a pointer to a struct. The struct contains a pointer to the super class of the current implementation and the a pointer to the receiver. The former is needed during runtime to search for the overridden implementation, the latter is used as the first argument.
In the case of a class method the receiver is again a class pointer, yet not the same as the super_class. In your case the receiver is a MyClass pointer while the super_class pointer would be NSObject.
Two side notes: I recommend against putting energy in writing the fanciest Singleton. Better leave it up to the developer to create his own instances or use the provided shared instance. And please note that double-checked locking is broken.
I use this code to create subclasses which are individually singletons:
+(id)sharedManager {
Class class = [self class];
static SPPanelManager *sharedManager = nil;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
sharedManager = [[class alloc] init];
});
return sharedManager;
}
And then in the .h of each subclass, there's this, with the name of the class as the return value:
+(SPWeatherManager *)sharedManager;
If these are used individually, they work perfectly, and launch their class as expected. If used together however, they all take the class of the first singleton generated.
How could i change this code so that the subclasses are all their own singletons?
It seems your complicated construct did not confuse dispatch_once a bit.
As requested (that's what dispatch_once is for, after all), sharedManager is only assigned once.
You need to create multiple singletons. Change the class factory method to test for the class, and if the base class create/return one object, and if the subclass another. You need two dispatch once objects (typing this on an iPad, could do real code later). In a more general sense, you could use a mutable dictionary to hold the dispatch object and singleton, thus supporting a virtually unlimited number of subclasses, by getting the NSString name of the class and using it as the key.
I initialized a class in my singleton called DataModel. Now, from my UIViewController, when I click a button, I have a method that is trying to access that class so that I may add an object to one of its dictionaries. My get/set method passes back the pointer to the class from my singleton, but when I am back in my UIViewController, the class passed back doesn't respond to methods. It's like it's just not there. I think it has something to do with the difference in passing pointers around classes or something. I even tried using the copy method to throw a copy back, but no luck.
UIViewController:
ApplicationSingleton *applicationSingleton = [[ApplicationSingleton alloc] init];
DataModel *dataModel = [applicationSingleton getDataModel];
[dataModel retrieveDataCategory:dataCategory];
Singleton:
ApplicationSingleton *m_instance;
DataModel *m_dataModel;
- (id) init {
NSLog(#"ApplicationSingleton.m initialized.");
self = [super init];
if(self != nil) {
if(m_instance != nil) {
return m_instance;
}
NSLog(#"Initializing the application singleton.");
m_instance = self;
m_dataModel = [[DataModel alloc] init];
}
NSLog(#"ApplicationSingleton init method returning.");
return m_instance;
}
-(DataModel *)getDataModel {
DataModel *dataModel_COPY = [m_dataModel copy];
return dataModel_COPY;
}
For the getDataModel method, I also tried this:
-(DataModel *)getDataModel {
return m_dataModel;
}
In my DataModel retrieveDataCategory method, I couldn't get anything to work. I even just tried putting a NSLog in there but it never would come onto the console.
Any ideas?
Most likely you are sending messages that get ignored, e.g. they're being sent to objects which don't exist/aren't the one you're looking for, and for some reason aren't crashing. This occurs in the case of messaging nil, or possibly other illegitimate values. Although you seem to expect that the m_ variables will be initialized to 0, this is not good form, and furthermore you are not following a very typical objc pattern for your singletons -- m_dataModel should be an ivar of m_instance, and m_instance should probably be declared static, as you probably don't want it accessed from other files directly. In addition, the most likely source of your bug is somehow the -init method, which should never be called on a singleton -- instead do something like this:
+ (ApplicationSingleton *)sharedInstance {
static ApplicationSingleton *instance = nil;
if(!instance) {
instance = [[self alloc] init]; //or whatever custom initializer you would like, furthermore some people just put the initialization code here and leave -init empty
}
return instance;
}
the code you have now leaks because you allocate an object (self) and don't release it before returning a potentially different instance (the shared one if one already exists), such that the newly allocated one is typically lost.
I am a little confused by this snippet of code (presented in the CocoaFundamentals guide) that overrides some of the methods when creating a singleton instance.
static id sharedReactor = nil;
+(id)sharedInstance {
if(sharedReactor == nil) sharedReactor = [[super allocWithZone:NULL] init];
return sharedReactor;
}
.
+(id)allocWithZone:(NSZone *)zone {
return[[self sharedInstance] retain];
}
-(id)retain {
return self;
}
In the code where the singleton instance is created the +sharedInstance method calls [super allocWithZone:NILL] from the superclass (which in my case is NSObject) The allocWithZone above is only called if you attempt to use it to create a new singleton.
The bit I am confused about is the use of retain, especially seeing as retain is also overridden to return self. Can anyone explain this, could it not be written:
+(id)allocWithZone:(NSZone *)zone {
return [self sharedInstance];
}
-(id)retain {
return self;
}
EDIT_001:
Based on comments and reading various posts on the web I have decided to go with the following (see below) I have chosen to go for a shared singleton approach where if needed I would have the option of creating a second or third instance. Also at this stage as I am only using the singleton for the model portion of MVC for a simple iPhone app I have decided to leave thread safety out. I am aware its important and as I get more familiar with iPhone programming I will likely use +initialize instead (keeping in mind the subclass issue where it can be called twice) Also I have added a dealloc, firstly to log a message should the singleton be released, but also to clean things up properly should the singleton be no longer required.
#interface SharedManager : NSObject
+(id)sharedInstance;
#end
#implementation SharedManager
static id myInstance = nil;
+(id)sharedInstance {
if(myInstance == nil) {
myInstance = [[self alloc] init];
}
return myInstance;
}
-(void)dealloc {
NSLog(#"_deal: %#", [self class]);
[super dealloc];
myInstance = nil;
}
#end
In testing I found that I had a set the static variable to nil in the dealloc or it maintained its pointer to the original object. I was initially a little confused by this as I was expecting the scope of the static to be the instance, I guess its the class instead, which makes sense.
cheers gary
First, don't use this code. There is almost never a reason to do all this for a simple singleton. Apple is demonstrating a "Forced Singleton," in that it is impossible to create two of them. It is very rare to really need this. You can almost always use the "shared singleton" approach used by most of the Cocoa objects that have a singleton constructor.
Here's my preferred way of implementing shared singleton:
+ (MYManager *)sharedManager
{
static MYManager *sharedManager = nil;
if (sharedManager == nil)
{
sharedManager = [[self alloc] init];
}
return sharedManager;
}
That's it. No other code is required. Callers who use +sharedManager will get the shared instance. Callers who call +alloc can create unique instances if they really want to. This is how such famous "singletons" as NSNotificationCenter work. If you really want your own private notification center, there is no reason the class should forbid it. This approach has the following advantages:
Less code.
More flexible in cases where a non-shared instance is useful.
Most importantly: the code does what it says it does. A caller who thinks he's making a unique instance with +alloc doesn't encounter surprising "spooky action at a distance" behavior that requires him to know an internal implementation detail of the object.
If you really need a forced singleton because the object in question maps to a unique resource that cannot be shared (and it's really rare to encounter such a situation), then you still shouldn't use +alloc trickery to enforce it. This just masks a programming error of trying to create a new instance. Instead, you should catch the programming error this way:
+ (MYManager *)sharedManager
{
static MYManager *sharedManager = nil;
if (sharedManager == nil)
{
sharedManager = [[self alloc] initSharedManager];
}
return sharedManager;
}
- (id)init
{
NSAssert(NO, #"Attempting to instantiate new instance. Use +sharedManager.");
return nil;
}
// Private method. Obviously don't put this in your .h
- (id)initSharedManager
{
self = [super init];
....
return self;
}
There is a good example of different singleton methods with comments here on SO:
What does your Objective-C singleton look like?
If it helps, the example has a different approach to allocWithZone: which returns nil.
I have a class that contains a few instance methods which need to be called from another class. I know how to do that -
TimeFormatter *myTimeFormatter = [[TimeFormatter alloc] init];
[myTimeFormatter formatTime:time];
However, I don't want to have to alloc and init TimeFormatter every time I need to call one of its methods. (I need to call TimeFormatter's methods from various methods in another class).
I tried putting
TimeFormatter *myTimeFormatter = [[TimeFormatter alloc] init];
"by itself", or not in any blocks, but when I compile, I get an "initializer element is not constant" error.
Any input is greatly appreciated!
You can use the singleton pattern. You can read more about it here.
Specifically, you'd do something like:
static TimeFormatter* gSharedTimeFormatter = nil;
#implementation TimeFormatter
+ (TimeFormatter*)sharedTimeFormatter {
if (!gSharedTimeFormatter) {
#synchronized(self) {
if (!gSharedTimeFormatter) {
gSharedTimeFormatter = [[TimeFormatter alloc] init];
}
}
}
return gSharedTimeFormatter;
}
...
#end
Notice that we check if the variable is null, and if it is, we take a lock, and check again. This way, we incur the locking cost only on the allocation path, which happens only once in the program. This pattern is known as double-checked locking.
However, I don't want to have to alloc and init TimeFormatter every time I need to call one of its methods. (I need to call TimeFormatter's methods from various methods in another class).
I think it's worth clarifying some OOP terminology here.
The reason you need to alloc and init TimeFormatter is because your methods are instance methods. Because they're instance methods, you need an instance, and that's what alloc and init provide. Then you call your methods on (send messages to) the instance ([myTimeFormatter formatTimeString:…]).
The advantage of allowing instances is that you can keep state and settings in each instance, in instance variables, and make the latter into publicly-visible properties. Then you can deliberately have multiple instances, each having its own settings configured by whatever's using that instance.
If you don't need that functionality, you don't need to make these instance methods. You can make them class methods or even C functions, and then you don't need a TimeFormatter instance. With class methods, you send messages directly to the class ([TimeFormatter formatTimeString:…]).
And if you do want settings shared among all instances (and you don't have any state to keep), then you're right that you can just have one instance—a singleton.
The reason for that parenthesis is that shared state is bad, especially if two threads may use the time formatter concurrently. (For that matter, you could say that about settings, too. What if one thread wants seconds and the other doesn't? What if one wants 24-hour and the other wants 12-hour?) Better to have each thread use its own time formatter, so that they don't get tripped up by each other's state.
(BTW, if TimeFormatter is the actual name of your class: You are aware of NSDateFormatter, right? It does let you only format/parse the time.)
Here's a detail example of a sharedMethod. Credit goes here
#implementation SearchData
#synthesize searchDict;
#synthesize searchArray;
- (id)init {
if (self = [super init]) {
NSString *path = [[NSBundle mainBundle] bundlePath];
NSString *finalPath = [path stringByAppendingPathComponent:#"searches.plist"];
searchDict = [[NSDictionary alloc] initWithContentsOfFile:finalPath];
searchArray = [[searchDict allKeys] retain];
}
return self;
}
- (void)dealloc {
[searchDict release];
[searchArray release];
[super dealloc];
}
static SearchData *sharedSingleton = NULL;
+ (SearchData *)sharedSearchData {
#synchronized(self) {
if (sharedSingleton == NULL)
sharedSingleton = [[self alloc] init];
}
return(sharedSingleton);
}
#end
A very nice, and easy, way to setup a Singleton is to use Matt Gallager's SYNTHESIZE_SINGLETON_FOR_CLASS.
It sounds like you want to make TimeFormatter a singleton, where only one instance can be created. Objective-C doesn't make this super easy, but basically you can expose a static method that returns a pointer to TimeFormatter. This pointer will be allocated and initialized the first time in, and every time after that same pointer can be used. This question has some examples of creating a singleton in Objective-C.
You are trying to declare your variable outside the class? If to do it the way you want to do it you gotta declare it as static so
static TimeFormatter *myFormatter=...
From the name of the class though i dont see why you would wnat to keep one instance of your class... you can also do this with a singleton as described above, that is if you want to keep one instance of your class for the app as a whole.