In the upcoming scala 2.8, a util.control package has been added which includes a break library and a construct for handling exceptions so that code which looks like:
type NFE = NumberFormatException
val arg = "1"
val maybeInt = try { Some(arg.toInt) } catch { case e: NFE => None }
Can be replaced with code like:
import util.control.Exception._
val maybeInt = catching(classOf[NFE]) opt arg.toInt
My question is why? What does this add to the language other than providing another (and radically different) way to express the same thing? Is there anything which can be expressed using the new control but not via try-catch? Is it a DSL supposed to make exception-handling in Scala look like some other language (and if so, which one)?
There are two ways to think about exceptions. One way is to think of them as flow control: an exception changes the flow of execution of the program, making the execution jump from one place to another. A second way is to think of them as data: an exception is an information about the execution of the program, which can then be used as input to other parts of the program.
The try/catch paradigm used in C++ and Java is very much of the first kind(*).
If, however, if you prefer to deal with exceptions as data, then you'll have to resort to code such as the one shown. For the simple case, that's rather easy. However, when it comes to the functional style where composition is king, things start to get complicated. You either have to duplicate code all around, or you roll your own library to deal with it.
Therefore, in a language which purports to support both functional and OO style, one shouldn't be surprised to see library support for treating exceptions as data.
And note that there is oh-so-many other possibilities provided by Exception to handle things. You can, for instance, chain catch handlers, much in the way that Lift chain partial functions to make it easy to delegate responsibility over the handling of web page requests.
Here is one example of what can be done, since automatic resource management is in vogue these days:
def arm[T <: java.io.Closeable,R](resource: T)(body: T => R)(handlers: Catch[R]):R = (
handlers
andFinally (ignoring(classOf[Any]) { resource.close() })
apply body(resource)
)
Which gives you a safe closing of the resource (note the use of ignoring), and still applies any catching logic you may want to use.
(*) Curiously, Forth's exception control, catch&throw, is a mix of them. The flow jumps from throw to catch, but then that information is treated as data.
EDIT
Ok, ok, I yield. I'll give an example. ONE example, and that's it! I hope this isn't too contrived, but there's no way around it. This kind of thing would be most useful in large frameworks, not in small samples.
At any rate, let's first define something to do with the resource. I decided on printing lines and returning the number of lines printed, and here is the code:
def linePrinter(lnr: java.io.LineNumberReader) = arm(lnr) { lnr =>
var lineNumber = 0
var lineText = lnr.readLine()
while (null != lineText) {
lineNumber += 1
println("%4d: %s" format (lineNumber, lineText))
lineText = lnr.readLine()
}
lineNumber
} _
Here is the type of this function:
linePrinter: (lnr: java.io.LineNumberReader)(util.control.Exception.Catch[Int]) => Int
So, arm received a generic Closeable, but I need a LineNumberReader, so when I call this function I need to pass that. What I return, however, is a function Catch[Int] => Int, which means I need to pass two parameters to linePrinter to get it to work. Let's come up with a Reader, now:
val functionText = """def linePrinter(lnr: java.io.LineNumberReader) = arm(lnr) { lnr =>
var lineNumber = 1
var lineText = lnr.readLine()
while (null != lineText) {
println("%4d: %s" format (lineNumber, lineText))
lineNumber += 1
lineText = lnr.readLine()
}
lineNumber
} _"""
val reader = new java.io.LineNumberReader(new java.io.StringReader(functionText))
So, now, let's use it. First, a simple example:
scala> linePrinter(new java.io.LineNumberReader(reader))(noCatch)
1: def linePrinter(lnr: java.io.LineNumberReader) = arm(lnr) { lnr =>
2: var lineNumber = 1
3: var lineText = lnr.readLine()
4: while (null != lineText) {
5: println("%4d: %s" format (lineNumber, lineText))
6: lineNumber += 1
7: lineText = lnr.readLine()
8: }
9: lineNumber
10: } _
res6: Int = 10
And if I try it again, I get this:
scala> linePrinter(new java.io.LineNumberReader(reader))(noCatch)
java.io.IOException: Stream closed
Now suppose I want to return 0 if any exception happens. I can do it like this:
linePrinter(new java.io.LineNumberReader(reader))(allCatch withApply (_ => 0))
What's interesting here is that I completely decoupled the exception handling (the catch part of try/catch) from the closing of the resource, which is done through finally. Also, the error handling is a value I can pass on to the function. At the very least, it makes mocking of try/catch/finally statements much easier. :-)
Also, I can combine multiple Catch using the or method, so that different layers of my code might choose to add different handlers for different exceptions. Which really is my main point, but I couldn't find an exception-rich interface (in the brief time I looked :).
I'll finish with a remark about the definition of arm I gave. It is not a good one. Particularly, I can't use Catch methods such as toEither or toOption to change the result from R to something else, which seriously decreases the value of using Catch in it. I'm not sure how to go about changing that, though.
As the guy who wrote it, the reasons are composition and encapsulation. The scala compiler (and I am betting most decent sized source bases) is littered with places which swallow all exceptions -- you can see these with -Ywarn-catches -- because the programmer is too lazy to enumerate the relevant ones, which is understandable because it's annoying. By making it possible to define, re-use, and compose catch and finally blocks independently of the try logic, I hoped to lower the barrier to writing sensible blocks.
And, it's not exactly finished, and I'm working on a million other areas too. If you look through the actors code you can see examples of huge cut-and-pasted multiply-nested try/catch/finally blocks. I was/am unwilling to settle for try { catch { try { catch { try { catch ...
My eventual plan is to have catch take an actual PartialFunction rather than require a literal list of case statements, which presents a whole new level of opportunity, i.e. try foo() catch getPF()
I'd say it's foremost a matter of style of expression.
Beyond being shorter than its equivalent, the new catching() method offers a more functional way to express the same behavior. Try ... catch statements are generally considered imperative style and exceptions are considered side-effects. Catching() puts a blanket on this imperative code to hide it from view.
More importantly, now that we have a function then it can be more easily composed with other things; it can be passed to other higher-order functions to create more sophisticated behavior. (You cannot pass a try .. catch statement with a parametrized exception type directly).
Another way to look at this is if Scala didn't offer this catching() function. Then most likely people would 're-invent' it independently and that would cause code duplication, and lead to more non-standard code. So I think the Scala designers believe this function is common enough to warrant including it in the standard Scala library. (And I agree)
alex
Related
First of all, I'm very new to Scala and don't have any experience writing production code with it, so I lack understanding of what is considered a good/best practice among community. I stumbled upon these resources:
https://github.com/alexandru/scala-best-practices
https://nrinaudo.github.io/scala-best-practices/
It is mentioned there that throwing exceptions is not very good practice, which made me think what would be a good way to define preconditions for function then, because
A function that throws is a bit of a lie: its type implies it’s total function when it’s not.
After a bit of research, it seems that using Option/Either/Try/Or(scalactic) is a better approach, since you can use something like T Or IllegalArgumentException as return type to clearly indicate that function is actually partial, using exception as a way to store message that can be wrapped in other exceptions.
However lacking Scala experience I don't quite understand if this is actually viable approach for a real project or using Predef.require is a way to go. I would appreciate if someone explained how things are usually done in Scala community and why.
I've also seen Functional assertion in Scala, but while the idea itself looks interesting, I think PartialFunction is not very suitable for the purpose as it is, because often more than one argument is passed and tuples look like a hack in this case.
Option or Either is definitely the way to go for functional programming.
With Option it is important to document why None might be returned.
With Either, the left side is the unsuccessful value (the "error"), while the right side is the successful value. The left side does not necessarily have to be an Exception (or a subtype of it), it can be a simple error message String (type aliases are your friend here) or a custom data type that is suitable for you application.
As an example, I usually use the following pattern when error handling with Either:
// Somewhere in a package.scala
type Error = String // Or choose something more advanced
type EitherE[T] = Either[Error, T]
// Somewhere in the program
def fooMaybe(...): EitherE[Foo] = ...
Try should only be used for wrapping unsafe (most of the time, plain Java) code, giving you the ability to pattern-match on the result:
Try(fooDangerous()) match {
case Success(value) => ...
case Failure(value) => ...
}
But I would suggest only using Try locally and then go with the above mentioned data types from there.
Some advanced datatypes like cats.effect.IO or monix.reactive.Observable contain error handling natively.
I would also suggest looking into cats.data.EitherT for typeclass-based error handling. Read the documentation, it's definitely worth it.
As a sidenote, for everyone coming from Java, Scala treats all Exceptions as Java treats RuntimeExceptions. That means, even when an unsafe piece of code from one of your dependencies throws a (checked) IOException, Scala will never require you to catch or otherwise handle the exception. So as a rule of thumb, when using Java - dependencies, almost always wrap them in a Try (or an IO if they execute side effects or block the thread).
I think your reasoning is correct. If you have a simple total (opposite of partial) function with arguments that can have invalid types then the most common and simple solution is to return some optional result like Option, etc.
It's usually not advisable to throw exceptions as they break FP laws. You can use any library that can return a more advanced type than Option like Scalaz Validation if you need to compose results in ways that are awkward with Option.
Another two alternatives I could offer is to use:
Type constrained arguments that enforce preconditions. Example: val i: Int Refined Positive = 5 based on https://github.com/fthomas/refined. You can also write your own types which wrap primitive types and assert some properties. The problem here is if you have arguments that have multiple interdependent valid values which are mutually exclusive per argument. For instance x > 1 and y < 1 or x < 1 and y > 1. In such case you can return an optional value instead of using this approach.
Partial functions, which in the essence resemble optional return types: case i: Int if i > 0 => .... Docs: https://www.scala-lang.org/api/2.12.1/scala/PartialFunction.html.
For example:
PF's def lift: (A) ⇒ Option[B] converts PF to your regular function.
Turns this partial function into a plain function returning an Option
result.
Which is similar to returning an option. The problem with partial functions that they are a bit awkward to use and not fully FP friendly.
I think Predef.require belongs to very rare cases where you don't want to allow any invalid data to be constructed and is more of a stop-everything-if-this-happens kind of measure. Example would be that you get arguments you never supposed to get.
You use the return type of the function to indicate the type of the result.
If you want to describe a function that can fail for whatever reason, of the types you mentioned you would probably return Try or Either: I am going to "try" to give your a result, or I am going to return "either" a success or an failure.
Now you can specify a custom exception
case class ConditionException(message: String) extends RuntimeException(message)
that you would return if your condition is not satisfied, e.g
import scala.util._
def myfunction(a: String, minLength: Int): Try[String] = {
if(a.size < minLength) {
Failure(ConditionException(s"string $a is too short")
} else {
Success(a)
}
}
and with Either you would get
import scala.util._
def myfunction(a: String, minLength: Int): Either[ConditionException,String] = {
if(a.size < minLength) {
Left(ConditionException(s"string $a is too short")
} else {
Right(a)
}
}
Not that the Either solution clearly indicates the error your function might return
So, I was trying to learn about Continuation. I came across with the following saying (link):
Say you're in the kitchen in front of the refrigerator, thinking about a sandwich. You take a continuation right there and stick it in your pocket. Then you get some turkey and bread out of the refrigerator and make yourself a sandwich, which is now sitting on the counter. You invoke the continuation in your pocket, and you find yourself standing in front of the refrigerator again, thinking about a sandwich. But fortunately, there's a sandwich on the counter, and all the materials used to make it are gone. So you eat it. :-) — Luke Palmer
Also, I saw a program in Scala:
var k1 : (Unit => Sandwich) = null
reset {
shift { k : Unit => Sandwich) => k1 = k }
makeSandwich
}
val x = k1()
I don't really know the syntax of Scala (looks similar to Java and C mixed together) but I would like to understand the concept of Continuation.
Firstly, I tried to run this program (by adding it into main). But it fails, I think that it has a syntax error due to the ) near Sandwich but I'm not sure. I removed it but it still does not compile.
How to create a fully compiled example that shows the concept of the story above?
How this example shows the concept of Continuation.
In the link above there was the following saying: "Not a perfect analogy in Scala because makeSandwich is not executed the first time through (unlike in Scheme)". What does it mean?
Since you seem to be more interested in the concept of the "continuation" rather than specific code, let's forget about that code for a moment (especially because it is quite old and I don't really like those examples because IMHO you can't understand them correctly unless you already know what a continuation is).
Note: this is a very long answer with some attempts to describe what a continuations is and why it is useful. There are some examples in Scala-like pseudo-code none of which can actually be compiled and run (there is just one compilable example at the very end and it references another example from the middle of the answer). Expect to spend a significant amount of time just reading this answer.
Intro to continuations
Probably the first thing you should do to understand a continuation is to forget about how modern compilers for most of the imperative languages work and how most of the modern CPUs work and particularly the idea of the call stack. This is actually implementation details (although quite popular and quite useful in practice).
Assume you have a CPU that can execute some sequence of instructions. Now you want to have a high level languages that support the idea of methods that can call each other. The obvious problem you face is that the CPU needs some "forward only" sequence of commands but you want some way to "return" results from a sub-program to the caller. Conceptually it means that you need to have some way to store somewhere before the call all the state of the caller method that is required for it to continue to run after the result of the sub-program is computed, pass it to the sub-program and then ask the sub-program at the end to continue execution from that stored state. This stored state is exactly a continuation. In most of the modern environments those continuations are stored on the call stack and often there are some assembly instructions specifically designed to help handling it (like call and return). But again this is just implementation details. Potentially they might be stored in an arbitrary way and it will still work.
So now let's re-iterate this idea: a continuation is a state of the program at some point that is enough to continue its execution from that point, typically with no additional input or some small known input (like a return value of the called method). Running a continuation is different from a method call in that usually continuation never explicitly returns execution control back to the caller, it can only pass it to another continuation. Potentially you can create such a state yourself, but in practice for the feature to be useful you need some support from the compiler to build continuations automatically or emulate it in some other way (this is why the Scala code you see requires a compiler plugin).
Asynchronous calls
Now there is an obvious question: why continuations are useful at all? Actually there are a few more scenarios besides the simple "return" case. One such scenario is asynchronous programming. Actually if you do some asynchronous call and provide a callback to handle the result, this can be seen as passing a continuation. Unfortunately most of the modern languages do not support automatic continuations so you have to grab all the relevant state yourself. Another problem appears if you have some logic that needs a sequence of many async calls. And if some of the calls are conditional, you easily get to the callbacks hell. The way continuations help you avoid it is by allowing you build a method with effectively inverted control flow. With typical call it is the caller that knows the callee and expects to get a result back in a synchronous way. With continuations you can write a method with several "entry points" (or "return to points") for different stages of the processing logic that you can just pass to some other method and that method can still return to exactly that position.
Consider following example (in pseudo-code that is Scala-like but is actually far from the real Scala in many details):
def someBusinessLogic() = {
val userInput = getIntFromUser()
val firstServiceRes = requestService1(userInput)
val secondServiceRes = if (firstServiceRes % 2 == 0) requestService2v1(userInput) else requestService2v2(userInput)
showToUser(combineUserInputAndResults(userInput,secondServiceRes))
}
If all those calls a synchronous blocking calls, this code is easy. But assume all those get and request calls are asynchronous. How to re-write the code? The moment you put the logic in callbacks you loose the clarity of the sequential code. And here is where continuations might help you:
def someBusinessLogicCont() = {
// the method entry point
val userInput
getIntFromUserAsync(cont1, captureContinuationExpecting(entry1, userInput))
// entry/return point after user input
entry1:
val firstServiceRes
requestService1Async(userInput, captureContinuationExpecting(entry2, firstServiceRes))
// entry/return point after the first request to the service
entry2:
val secondServiceRes
if (firstServiceRes % 2 == 0) {
requestService2v1Async(userInput, captureContinuationExpecting(entry3, secondServiceRes))
// entry/return point after the second request to the service v1
entry3:
} else {
requestService2v2Async(userInput, captureContinuationExpecting(entry4, secondServiceRes))
// entry/return point after the second request to the service v2
entry4:
}
showToUser(combineUserInputAndResults(userInput, secondServiceRes))
}
It is hard to capture the idea in a pseudo-code. What I mean is that all those Async method never return. The only way to continue execution of the someBusinessLogicCont is to call the continuation passed into the "async" method. The captureContinuationExpecting(label, variable) call is supposed to create a continuation of the current method at the label with the input (return) value bound to the variable. With such a re-write you still has a sequential-looking business logic even with all those asynchronous calls. So now for a getIntFromUserAsync the second argument looks like just another asynchronous (i.e. never-returning) method that just requires one integer argument. Let's call this type Continuation[T]
trait Continuation[T] {
def continue(value: T):Nothing
}
Logically Continuation[T] looks like a function T => Unit or rather T => Nothing where Nothing as the return type signifies that the call actually never returns (note, in actual Scala implementation such calls do return, so no Nothing there, but I think conceptually it is easy to think about no-return continuations).
Internal vs external iteration
Another example is a problem of iteration. Iteration can be internal or external. Internal iteration API looks like this:
trait CollectionI[T] {
def forEachInternal(handler: T => Unit): Unit
}
External iteration looks like this:
trait Iterator[T] {
def nextValue(): Option[T]
}
trait CollectionE[T] {
def forEachExternal(): Iterator[T]
}
Note: often Iterator has two method like hasNext and nextValue returning T but it will just make the story a bit more complicated. Here I use a merged nextValue returning Option[T] where the value None means the end of the iteration and Some(value) means the next value.
Assuming the Collection is implemented by something more complicated than an array or a simple list, for example some kind of a tree, there is a conflict here between the implementer of the API and the API user if you use typical imperative language. And the conflict is over the simple question: who controls the stack (i.e. the easy to use state of the program)? The internal iteration is easier for the implementer because he controls the stack and can easily store whatever state is needed to move to the next item but for the API user the things become tricky if she wants to do some aggregation of the stored data because now she has to save the state between the calls to the handler somewhere. Also you need some additional tricks to let the user stop the iteration at some arbitrary place before the end of the data (consider you are trying to implement find via forEach). Conversely the external iteration is easy for the user: she can store all the state necessary to process data in any way in local variables but the API implementer now has to store his state between calls to the nextValue somewhere else. So fundamentally the problem arises because there is only one place to easily store the state of "your" part of the program (the call stack) and two conflicting users for that place. It would be nice if you could just have two different independent places for the state: one for the implementer and another for the user. And continuations provide exactly that. The idea is that we can pass execution control between two methods back and forth using two continuations (one for each part of the program). Let's change the signatures to:
// internal iteration
// continuation of the iterator
type ContIterI[T] = Continuation[(ContCallerI[T], ContCallerLastI)]
// continuation of the caller
type ContCallerI[T] = Continuation[(T, ContIterI[T])]
// last continuation of the caller
type ContCallerLastI = Continuation[Unit]
// external iteration
// continuation of the iterator
type ContIterE[T] = Continuation[ContCallerE[T]]
// continuation of the caller
type ContCallerE[T] = Continuation[(Option[T], ContIterE[T])]
trait Iterator[T] {
def nextValue(cont : ContCallerE[T]): Nothing
}
trait CollectionE[T] {
def forEachExternal(): Iterator[T]
}
trait CollectionI[T] {
def forEachInternal(cont : ContCallerI[T]): Nothing
}
Here ContCallerI[T] type, for example, means that this is a continuation (i.e. a state of the program) the expects two input parameters to continue running: one of type T (the next element) and another of type ContIterI[T] (the continuation to switch back). Now you can see that the new forEachInternal and the new forEachExternal+Iterator have almost the same signatures. The only difference in how the end of the iteration is signaled: in one case it is done by returning None and in other by passing and calling another continuation (ContCallerLastI).
Here is a naive pseudo-code implementation of a sum of elements in an array of Int using these signatures (an array is used instead of something more complicated to simplify the example):
class ArrayCollection[T](val data:T[]) : CollectionI[T] {
def forEachInternal(cont0 : ContCallerI[T], lastCont: ContCallerLastI): Nothing = {
var contCaller = cont0
for(i <- 0 to data.length) {
val contIter = captureContinuationExpecting(label, contCaller)
contCaller.continue(data(i), contIter)
label:
}
}
}
def sum(arr: ArrayCollection[Int]): Int = {
var sum = 0
val elem:Int
val iterCont:ContIterI[Int]
val contAdd0 = captureContinuationExpecting(labelAdd, elem, iterCont)
val contLast = captureContinuation(labelReturn)
arr.forEachInternal(contAdd0, contLast)
labelAdd:
sum += elem
val contAdd = captureContinuationExpecting(labelAdd, elem, iterCont)
iterCont.continue(contAdd)
// note that the code never execute this line, the only way to jump out of labelAdd is to call contLast
labelReturn:
return sum
}
Note how both implementations of the forEachInternal and of the sum methods look fairly sequential.
Multi-tasking
Cooperative multitasking also known as coroutines is actually very similar to the iterations example. Cooperative multitasking is an idea that the program can voluntarily give up ("yield") its execution control either to the global scheduler or to another known coroutine. Actually the last (re-written) example of sum can be seen as two coroutines working together: one doing iteration and another doing summation. But more generally your code might yield its execution to some scheduler that then will select which other coroutine to run next. And what the scheduler does is manages a bunch of continuations deciding which to continue next.
Preemptive multitasking can be seen as a similar thing but the scheduler is run by some hardware interruption and then the scheduler needs a way to create a continuation of the program being executed just before the interruption from the outside of that program rather than from the inside.
Scala examples
What you see is a really old article that is referring to Scala 2.8 (while current versions are 2.11, 2.12, and soon 2.13). As #igorpcholkin correctly pointed out, you need to use a Scala continuations compiler plugin and library. The sbt compiler plugin page has an example how to enable exactly that plugin (for Scala 2.12 and #igorpcholkin's answer has the magic strings for Scala 2.11):
val continuationsVersion = "1.0.3"
autoCompilerPlugins := true
addCompilerPlugin("org.scala-lang.plugins" % "scala-continuations-plugin_2.12.2" % continuationsVersion)
libraryDependencies += "org.scala-lang.plugins" %% "scala-continuations-library" % continuationsVersion
scalacOptions += "-P:continuations:enable"
The problem is that plugin is semi-abandoned and is not widely used in practice. Also the syntax has changed since the Scala 2.8 times so it is hard to get those examples running even if you fix the obvious syntax bugs like missing ( here and there. The reason of that state is stated on the GitHub as:
You may also be interested in https://github.com/scala/async, which covers the most common use case for the continuations plugin.
What that plugin does is emulates continuations using code-rewriting (I suppose it is really hard to implement true continuations over the JVM execution model). And under such re-writings a natural thing to represent a continuation is some function (typically called k and k1 in those examples).
So now if you managed to read the wall of text above, you can probably interpret the sandwich example correctly. AFAIU that example is an example of using continuation as means to emulate "return". If we re-sate it with more details, it could go like this:
You (your brain) are inside some function that at some points decides that it wants a sandwich. Luckily you have a sub-routine that knows how to make a sandwich. You store your current brain state as a continuation into the pocket and call the sub-routine saying to it that when the job is done, it should continue the continuation from the pocket. Then you make a sandwich according to that sub-routine messing up with your previous brain state. At the end of the sub-routine it runs the continuation from the pocket and you return to the state just before the call of the sub-routine, forget all your state during that sub-routine (i.e. how you made the sandwich) but you can see the changes in the outside world i.e. that the sandwich is made now.
To provide at least one compilable example with the current version of the scala-continuations, here is a simplified version of my asynchronous example:
case class RemoteService(private val readData: Array[Int]) {
private var readPos = -1
def asyncRead(callback: Int => Unit): Unit = {
readPos += 1
callback(readData(readPos))
}
}
def readAsyncUsage(rs1: RemoteService, rs2: RemoteService): Unit = {
import scala.util.continuations._
reset {
val read1 = shift(rs1.asyncRead)
val read2 = if (read1 % 2 == 0) shift(rs1.asyncRead) else shift(rs2.asyncRead)
println(s"read1 = $read1, read2 = $read2")
}
}
def readExample(): Unit = {
// this prints 1-42
readAsyncUsage(RemoteService(Array(1, 2)), RemoteService(Array(42)))
// this prints 2-1
readAsyncUsage(RemoteService(Array(2, 1)), RemoteService(Array(42)))
}
Here remote calls are emulated (mocked) with a fixed data provided in arrays. Note how readAsyncUsage looks like a totally sequential code despite the non-trivial logic of which remote service to call in the second read depending on the result of the first read.
For full example you need prepare Scala compiler to use continuations and also use a special compiler plugin and library.
The simplest way is a create a new sbt.project in IntellijIDEA with the following files: build.sbt - in the root of the project, CTest.scala - inside main/src.
Here is contents of both files:
build.sbt:
name := "ContinuationSandwich"
version := "0.1"
scalaVersion := "2.11.6"
autoCompilerPlugins := true
addCompilerPlugin(
"org.scala-lang.plugins" % "scala-continuations-plugin_2.11.6" % "1.0.2")
libraryDependencies +=
"org.scala-lang.plugins" %% "scala-continuations-library" % "1.0.2"
scalacOptions += "-P:continuations:enable"
CTest.scala:
import scala.util.continuations._
object CTest extends App {
case class Sandwich()
def makeSandwich = {
println("Making sandwich")
new Sandwich
}
var k1 : (Unit => Sandwich) = null
reset {
shift { k : (Unit => Sandwich) => k1 = k }
makeSandwich
}
val x = k1()
}
What the code above essentially does is calling makeSandwich function (in a convoluted manner). So execution result would be just printing "Making sandwich" into console. The same result would be achieved without continuations:
object CTest extends App {
case class Sandwich()
def makeSandwich = {
println("Making sandwich")
new Sandwich
}
val x = makeSandwich
}
So what's the point? My understanding is that we want to "prepare a sandwich", ignoring the fact that we may be not ready for that. We mark a point of time where we want to return to after all necessary conditions are met (i.e. we have all necessary ingredients ready). After we fetch all ingredients we can return to the mark and "prepare a sandwich", "forgetting that we were unable to do that in past". Continuations allow us to "mark point of time in past" and return to that point.
Now step by step. k1 is a variable to hold a pointer to a function which should allow to "create sandwich". We know it because k1 is declared so: (Unit => Sandwich).
However initially the variable is not initialized (k1 = null, "there are no ingredients to make a sandwich yet"). So we can't call the function preparing sandwich using that variable yet.
So we mark a point of execution where we want to return to (or point of time in past we want to return to) using "reset" statement.
makeSandwich is another pointer to a function which actually allows to make a sandwich. It's the last statement of "reset block" and hence it is passed to "shift" (function) as argument (shift { k : (Unit => Sandwich).... Inside shift we assign that argument to k1 variable k1 = k thus making k1 ready to be called as a function. After that we return to execution point marked by reset. The next statement is execution of function pointed to by k1 variable which is now properly initialized so finally we call makeSandwich which prints "Making sandwich" to a console. It also returns an instance of sandwich class which is assigned to x variable.
Not sure, probably it means that makeSandwich is not called inside reset block but just afterwards when we call it as k1().
I'm currently working on my functional programming - I am fairly new to it. Am i using Options correctly here? I feel pretty insecure on my skills currently. I want my code to be as safe as possible - Can any one point out what am I doing wrong here or is it not that bad? My code is pretty straight forward here:
def main(args: Array[String]): Unit =
{
val file = "myFile.txt"
val myGame = Game(file) //I have my game that returns an Option here
if(myGame.isDefined) //Check if I indeed past a .txt file
{
val solutions = myGame.get.getAllSolutions() //This returns options as well
if(solutions.isDefined) //Is it possible to solve the puzzle(crossword)
{
for(i <- solutions.get){ //print all solutions to the crossword
i.solvedCrossword foreach println
}
}
}
}
-Thanks!! ^^
When using Option, it is recommended to use match case instead of calling 'isDefined' and 'get'
Instead of the java style for loop, use higher-order function:
myGame match {
case Some(allSolutions) =>
val solutions = allSolutions.getAllSolutions
solutions.foreach(_.solvedCrossword.foreach(println))
case None =>
}
As a rule of thumb, you can think of Option as a replacement for Java's null pointer. That is, in cases where you might want to use null in Java, it often makes sense to use Option in Scala.
Your Game() function uses None to represent errors. So you're not really using it as a replacement for null (at least I'd consider it poor practice for an equivalent Java method to return null there instead of throwing an exception), but as a replacement for exceptions. That's not a good use of Option because it loses error information: you can no longer differentiate between the file not existing, the file being in the wrong format or other types of errors.
Instead you should use Either. Either consists of the cases Left and Right where Right is like Option's Some, but Left differs from None in that it also takes an argument. Here that argument can be used to store information about the error. So you can create a case class containing the possible types of errors and use that as an argument to Left. Or, if you never need to handle the errors differently, but just present them to the user, you can use a string with the error message as the argument to Left instead of case classes.
In getAllSolutions you're just using None as a replacement for the empty list. That's unnecessary because the empty list needs no replacement. It's perfectly fine to just return an empty list when there are no solutions.
When it comes to interacting with the Options, you're using isDefined + get, which is a bit of an anti pattern. get can be used as a shortcut if you know that the option you have is never None, but should generally be avoided. isDefined should generally only be used in situations where you need to know whether an option contains a value, but don't need to know the value.
In cases where you need to know both whether there is a value and what that value is, you should either use pattern matching or one of Option's higher-order functions, such as map, flatMap, getOrElse (which is kind of a higher-order function if you squint a bit and consider by-name arguments as kind-of like functions). For cases where you want to do something with the value if there is one and do nothing otherwise, you can use foreach (or equivalently a for loop), but note that you really shouldn't do nothing in the error case here. You should tell the user about the error instead.
If all you need here is to print it in case all is good, you can use for-comprehension which is considered quite idiomatic Scala way
for {
myGame <- Game("mFile.txt")
solutions <- myGame.getAllSolutions()
solution <- solutions
crossword <- solution.solvedCrossword
} println(crossword)
WartRemover's NonUnitStatements requires that statements that aren't returning unit must have an assignment. OK, but sometimes we have to use annoying Java APIs that both mutate and return a value, and we don't actually hardly ever care about the returned value.
So I end up trying this:
val _ = mutateSomething(foo)
But if I have multiple of these, _ is actually a legit val that has been assigned to, so I cannot reassign. Wartremover also rightly will admonish for gratuitous var-usage, so I can't just do var _ =.
I can do the following (need the ; to avoid Scala thinking it is a continue definition unless I add a full newline everytime I do this).
;{val _ = mutateSomething(foo)}
Is there a better way?
My general thoughts about linting tools is that you should not jump through hoops to satisfy them.
The point is to make your code better, both with fewer bugs and stylistically. But just assigning to var _ = does not achieve this. I would first be sure I really really don't care about the return value, not even asserting that it is what I expect it to be. If I don't, I would just add a #SuppressWarnings(Array("org.wartremover.warts.NonUnitStatements")) and maybe a comment about why and be done with it.
Scala is somewhat unique in that it's a somewhat opinionated language that also tries to integrate with another not-so-opinionated language. This leads to pain points. There are different philosophies to dealing with this, but I tend to not sweat it, and just be aware of and try to isolate the boundaries.
I'm posting an answer, but the real credit goes to Shane Delmore for pointing this out:
def discard(evaluateForSideEffectOnly: Any): Unit = {
val _: Any = evaluateForSideEffectOnly
() //Return unit to prevent warning due to discarding value
}
Alternatively (or see #som-snytt's comments below):
#specialized def discard[A](evaluateForSideEffectOnly: A): Unit = {
val _: A = evaluateForSideEffectOnly
() //Return unit to prevent warning due to discarding value
}
Then use it like: discard{ badMutateFun(foo) }.
Unlike the ;{ val _ = ... } solution, it looks way better, and also works in the beginning of a block without needing to alter style (a ; can't come at the start of a block, it must come after a statement).
So I'm learning functional Scala, and the book says exception breaks referential transparency, and thus Option should be used instead, like so:
def pattern(s: String): Option[Pattern] = {
try {
Some(Pattern.compile(s))
} catch {
case e: PatternSyntaxException => None
}
}
This seems pretty bad; I mean it seems equivalent to:
catch(Exception e){
return null;
}
Save for the fact that we can distinguish "null for error" from "null as genuine value". It seems it should at least return something that contains the error information like:
catch {
case e: Exception => Fail(e)
}
What am I missing?
At this specific section, Option is used mostly as an example because the operation used (calculating the mean) is a partial function, it doesn't produce a value for all possible values (the collection could be empty, thus there's no way to calculate the mean) and Option could be a valid case here. If you can't calculate the mean because the collection is empty just return a None.
But there are many other ways to solve this problem, you could use Either[L,R], with the Left being the error result and a Right as being the good result, you could still throw an exception and wrap it inside a Try object (which seems more common nowadays due to it's use in Promise and Future computations), you could use ScalaZ Validation if the error was actually a validation issue.
The main concept you should take a way from this part is that the error should be part of the return type of the function and not some magic operation (the exception) that can't be reasonably declared by the types.
And as a shameless plug, I did blog about Either and Try here.
It would be easier to answer this question if you weren't asking "why is Option better than exceptions?" and "why is Option better than null?" and "why is Option better than Try?" all at the same time.
The answer to the first of these questions is that using exceptions in situations that aren't truly exceptional muddles the control flow of your program. This is where referential transparency comes in—it's much easier for me (or you) to reason about your code if I can think in terms of values and don't have to keep track of where exceptions are being thrown and caught.
The answer to the second question (why not null?) is something like "Have you ever had to deal with NullPointerException in Java?".
For the third question, in general you're right—it's better to use a type like Either[Throwable, A] or Try[A] to represent computations that can fail, since they allow you to pass along more detailed information about the failure. In some cases, though, when a function can only fail in a single obvious way, it makes sense to use Option. For example, if I'm performing a lookup in a map, I probably don't really need or want something like an Either[NoSuchElementException, A], where the error is so abstract that I'd probably end up wrapping it in something more domain-specific anyway. So get on a map just returns an Option[A].
You should use util.Try:
scala> import java.util.regex.Pattern
import java.util.regex.Pattern
scala> def pattern(s: String): util.Try[Pattern] = util.Try(Pattern.compile(s))
pattern: (s: String)scala.util.Try[java.util.regex.Pattern]
scala> pattern("<?++")
res0: scala.util.Try[java.util.regex.Pattern] =
Failure(java.util.regex.PatternSyntaxException: Dangling meta character '+' near index 3
<?++
^)
scala> pattern("[.*]")
res1: scala.util.Try[java.util.regex.Pattern] = Success([.*])
The naive example
def pattern(s: String): Pattern = {
Pattern.compile(s)
}
has a sideeffect, it can influence the programm that uses it by other means than its result(it can cause a exception). This is discouraged in functional programming, because it increases the code complexity.
The code
def pattern(s: String): Option[Pattern] = {
try {
Some(Pattern.compile(s))
} catch {
case e: PatternSyntaxException => None
}
}
encapsulates the side effect producing part of the programm. The information why the Pattern failed is lost, but sometimes it only matters whether or not it fails. If it matters why the method failed one can use Try(http://www.scala-lang.org/files/archive/nightly/docs/library/index.html#scala.util.Try):
def pattern(s: String): Try[Pattern] = {
Try(Pattern.compile(s))
}
I think the other two answers give you good suggestions about how to proceed. I would still argue that throwing an exception is well represented in Scala's type system, using the bottom type Nothing. So it is well-typed, and I wouldn't exactly called it "magic operation".
However... if your method can quite commonly result in an invalid value, that is if your call side quite reasonably wants to handle such an invalid value straight away, then using Option, Either or Try is a good approach. In a scenario, where your call site doesn't really know what to do with such an invalid value, especially if it is an exceptional condition and not the common case, then you should use exceptions IMO.
The problem of exception is precisely not that they are not well working with functional programming, but that they can be difficult to reason about when you have side effects. Because then your call site must ensure to undo the side effects in the case of an exception. If your call site is purely functional, passing on an exception doesn't do any damage.
If any functions that does anything with integers would declare its return type a Try because of division-by-zero or overflow possibilities, this might totally clutter your code. Another very good reason to use exceptions is invalid argument ranges, or requirements. If you expect an argument to be an integer between 0 and x, you may well throw an IllegalArgumentException if it does not meet that property; conveniently in Scala: require(a >= 0 && a < x).