How to collapse five OpenGL textures into one? - iphone

I want to merge 5 "sublayers" to one single texture (you know, somethin' like Flatten Image in Photoshop) in OpenGL ES 1.x iPhone. I'm new to OpenGL, and just haven't find the answer yet.

assuming they are images to begin with can't you just draw them sequentially onto an in memory image
code

You don't need GL to combine textures together. Just do the math on each texel in C.
Now, if you want to use GL, you'll want to render to a texture (your final result).
This is done with OES_framebuffer_object. Now how you draw to that texture is completely up to you. You could draw 5 quads, each with a single texture, and use blending to merge them (you'll have to specify which math you want to apply though), you can use multi-texturing to do the work in less passes (and use Texture Environments to specify how to merge).
What kind of flattening operation do you want ?

Related

Why in 3D game we need to separate a material into so many textures for a static object?

Perhaps the question is not that correct, the textures should be say a kind of channel? although I know they will be mixed in the shader finally.
I know the knowledge of the various textures is very important, but also a bit hard to understand completely.
From my understanding:
diffuse - the 'real' color of an object without light involved.
light - for static objects. render light effections into texture beforehand.
specular - the area where has direct reflection.
ao - to absorb indirect light for the different area of an object.
alpha - to 'shape' the object.
emissive - self illuminance.
normal - pixel normal vector to deal with the light ray.
bump - (dont' know the exact differences between normalmap).
height - stores Z range values, to generate terrain, modify vertex etc.
And the items below should be related to PBR material which I'm not familiar with:
translucency / cavity / metalness / roughness etc...
Please correct me if some misunderstandings there.
But whatever, my question is why we need to separate these textures apart for a material but not only render them together into the diffusemap directly for a static object?
It'll be appreciated if some examples (especially for PBR) , and thank you very much.
I can beforehand bake all things into the diffuse map and apply to my
mesh, why I need to apply so many different textures?
Re-usability:
Most games re-use textures to reduce the size of the game. You can't if you combine them together. For example, when you two similar objects but you want to randomize the looks of them(aging effect), you can make them share the-same color(albedo) map but use different ao map. This becomes important when there hundreds of objects, you can use different combination of texture maps on similar objects to create unique Objects. If you have combined this into one, it would be impossible to share it with other similar objects but you to slightly make to look different.
Customize-able:
If you separate them, you'll be able to change the amount of effect each texture will apply to the Object. For example, the slider on the metallic slot for the Standard shader. There are more of this sliders on other map slots but they only appear once you plug a texture into the slot. You can't do this when you combine the textures into one.
Shader:
The standard shader can't do this so you have to learn how to write shader since you can't use one image to get the effects you would with all those texture maps with the standard shader. A custom shader is required and you need a way to read the information about the maps in the combined shader.
This seems like a reasonable place to start:
https://en.wikipedia.org/wiki/Texture_mapping
A texture map is an image applied (mapped) to the surface of a shape or polygon. This may be a bitmap image or a procedural texture. They may be stored in common image file formats, referenced by 3d model formats or material definitions, and assembled into resource bundles.
I would add to this that the shape or a polygon don't have to belong to 3d objects as one may imagine it. If you render two triangles as a rectangle, you can run all sorts of computations and store it in a "live" texture.
Texture mapping is a method for defining high frequency detail, surface texture, or color information on a computer-generated graphic or 3D model. Its application to 3D graphics was pioneered by Edwin Catmull in 1974.
What this detail represents is either some agreed upon format to represent some property, (say "roughness" within some BRDF model) which you would encounter if you are using some kind of an engine.
Or whatever you decide that detail to be, if you are writing your own engine. You can decide to store whatever you want, however you want it.
You'll notice on the link that different "mapping" techniques are mentioned, each with their own page. This is the result of some person, or people who did some research and came up with a paper detailing the technique. Other people adopt it, and that's how they find their way into engines.
There is no rule saying these can't be combined.

HLSL (Unity-specific ok, not necessary) combining Stencil and worldspace "reverse" clipping

I've built a working surface shader (call it "wonderland") that renders as invisible unless a companion "lookingGlass" shader intersects with it from the viewpoint of the camera. Simple stencil shader arrangement.
Easy peasy.
I can add shader settings to specify a plane, or even just a minimum worldspace Z value, and use clip() to only render pixels on one side of that plane... (in other words, I could use that to trim the content that's allowed by the Stencil.)
What I want to do is use the stencil on surfaces "through the looking glass", (to reveal geometry that's inside the looking glass) and to always render those surfaces when they're on "our" side of the looking glass (to always show them if they're on this side of the looking glass portal). eg., if z<0, render if the Stencil Ref value is satisfied. if z>=0, render regardless.
Now, in Unity I can attach two materials to the MeshRenderer component (one with a stencil shader, one with a "plane cutoff" shader) - that works fine. It's pretty awesome, actually, at least visually. But while I haven't benchmarked it yet, I instinctively believe it's going to massively impact framerate if there are a number of objects, fairly complicated geometry, etc., set up with this arrangement.
(I can also manage shader attachment in code, and only do this when I expect something to transition, but I'm really hoping to get a unified shader out of this to avoid unnecessary draw calls.)
As it turns out, what I was looking to do is impossible.
The two shaders I wish to combine are both surface shaders. While you can combine multiple surface shaders into a multipass shader, you cannot combine multiple surface shaders, with a Stencil, and with a clip() where the clip is applied to passes that the Stencil is not and vice-versa.
There are combinations that can achieve parts of this, or can achieve the entire goal with surface and vert (or other non-surf) shaders, but the combination of requirements stipulated by this question isn't supported as desired.
While this does not answer the question, the workaround in Unity is to create two materials that provide each piece of functionality. They can both exist on the item that needs both pieces, and code can otherwise manage whether one or the other or both is actively in use.
Similar solutions would be available in other packages.

Why does merging geometries improve rendering speed?

In my web application I only need to add static objects to my scene. It worked slow so I started searching and I found that merging geometries and merging vertices were the solution. When I implemented it, it indeed worked a lot better. All the articles said that the reason for this improvement is the decrease in number of WebGL calls. As I am not very familiar with things like OpenGL and WebGL (I use Three.js to avoid their complexity), I would like to know why exactly it reduces the WebGL calls?
Because you send one large object instead of many littles, the overhead reduces. So I understand that loading one big mesh to the scene goes faster than many small meshes.
BUT I do not understand why merging geometries also has a positive influence on the rendering calculation? I would also like to know the difference between merging geometries and merging vertices?
Thanks in advance!
three.js is a framework that helps you work with the WebGL API.
What a "mesh" is to three.js, to webgl, it's a series of low level calls that set up state and issue calls to the GPU.
Let's take a sphere for example. With three.js you would create it with a few lines:
var sphereGeometry = new THREE.SphereGeometry(10);
var sphereMaterial = new THREE.MeshBasicMaterial({color:'red'});
var sphereMesh = new THREE.Mesh( sphereGeometry, sphereMaterial);
myScene.add( sphereMesh );
You have your renderer.render() call, and poof, a sphere appears on screen.
A lot of stuff happens under the hood though.
The first line, creates the sphere "geometry" - the cpu will a bunch of math and logic describing a sphere with points and triangles. Points are vectors, three floats grouped together, triangles are a structure that groups these points by indecis (groups of integers).
Somewhere there is a loop that calculates the vectors based on trigonometry (sin, cos), and another, that weaves the resulting array of vectors into triangles (take every N , N + M , N + 2M, create a triangle etc).
Now these numbers exist in javascript land, it's just a bunch of floats and ints, grouped together in a specific way to describe shapes such as cubes, spheres and aliens.
You need a way to draw this construct on a screen - a two dimensional array of pixels.
WebGL does not actually know much about 3D. It knows how to manage memory on the gpu, how to compute things in parallel (or gives you the tools), it does know how to do mathematical operations that are crucial for 3d graphics, but the same math can be used to mine bitcoins, without even drawing anything.
In order for WebGL to draw something on screen, it first needs the data put into appropriate buffers, it needs to have the shader programs, it needs to be setup for that specific call (is there going to be blending - transparency in three.js land, depth testing, stencil testing etc), then it needs to know what it's actually drawing (so you need to provide strides, sizes of attributes etc to let it know where a 'mesh' actually is in memory), how it's drawing it (triangle strips, fans, points...) and what to draw it with - which shaders will it apply on the data you provided.
So, you need a way to 'teach' WebGL to do 3d.
I think the best way to get familiar with this concept is to look at this tutorial , re-reading if necessary, because it explains what happens pretty much on every single 3d object in perspective, ever.
To sum up the tutorial:
a perspective camera is basically two 4x4 matrices - a perspective matrix, that puts things into perspective, and a view matrix, that moves the entire world into camera space. Every camera you make, consists of these two matrices.
Every object exists in it's object space. TRS matrix, (world matrix in three.js terms) is used to transform this object into world space.
So this stuff - a concept such as "projective matrix" is what teaches webgl how to draw perspective.
Three.js abstracts this further and gives you things like "field of view" and "aspect ratio" instead of left right, top bottom.
Three.js also abstracts the transformation matrices (view matrix on the camera, and world matrices on every object) because it allows you to set "position" and "rotation" and computes the matrix based on this under the hood.
Since every mesh has to be processed by the vertex shader and the pixel shader in order to appear on the screen, every mesh needs to have all this information available.
When a draw call is being issued for a specific mesh, that mesh will have the same perspective matrix, and view matrix as any other object being rendered with the same camera. They will each have their own world matrices - numbers that move them around around your scene.
This is transformation alone, happening in the vertex shader. These results are then rasterized, and go to the pixel shader for processing.
Lets consider two materials - black plastic and red plastic. They will have the same shader, perhaps one you wrote using THREE.ShaderMaterial, or maybe one from three's library. It's the same shader, but it has one uniform value exposed - color. This allows you to have many instances of a plastic material, green, blue, pink, but it means that each of these requires a separate draw call.
Webgl will have to issue specific calls to change that uniform from red to black, and then it's ready to draw stuff using that 'material'.
So now imagine a particle system, displaying a thousand cubes each with a unique color. You have to issue a thousand draw calls to draw them all, if you treat them as separate meshes and change colors via a uniform.
If on the other hand, you assign vertex colors to each cube, you don't rely on the uniform any more, but on an attribute. Now if you merge all the cubes together, you can issue a single draw call, processing all the cubes with the same shader.
You can see why this is more efficient simply by taking a glance at webglrenderer from three.js, and all the stuff it has to do in order to translate your 3d calls to webgl. Better done once than a thousand times.
Back to those 3 lines, the sphereMaterial can take a color argument, if you look at the source, this will translate to a uniform vec3 in the shader. However, you can also achieve the same thing by rendering the vertex colors, and assigning the color you want before hand.
sphereMesh will wrap that computed geometry into an object that three's webglrenderer understands, which in turn sets up webgl accordingly.

Getting pixels data from image on iPhone

I want to use bitmap images as a "map" for levels in iphone game. Basicly it's all about the location of obstacles in the rectangular world. The obstacles would be color-coded -- where the white pixel is, there's no obstacle. Black means there is one at this point.
Now I need to use this data to do 2 things: (a) display the level map, (b) for in-game calculations. So, in general, I need a way to read the data from the bitmap and create some data structure (matrix-like) with those information - to both overlay the bitmap onto the level graphics as well as to calculate collisions and such.
How should I do it? Is there any easy way to read the data from image? And what's the best format to keep the images for this?
Have you looked at how Texture2D translates an image file to an OpenGL Texture ?
Tip: take a look at this Method in Texture2D.m:
- (id) initWithCGImage:(CGImageRef)image orientation:(UIImageOrientation)orientation sizeToFit:(BOOL)sizeToFit pixelFormat:(Texture2DPixelFormat)pixelFormat filter:(GLenum) filter
In 3D apps, it's quite common to use this kind of representation for height maps, in a height map, you use a Texture with colors that range from black to white ( white represents the maximum altitude )
For example, from this:
To this:
That was just to tell you that your representation is not that crazy :).
About reading the bitmap, I would also recommend you to read this (just in case you want to go deeper)
Hope I helped a bit!

OpenGL: optimizing render of quad particles

I'm rendering particles in a 2D game. Each particle is a quad (2 triangles). How can I make the drawing the fastest possible? All the particles has the same texture, I'm only changing it's positions.
Now I'm using a call to glVertexPointer and glDrawArrays for each particle. So I'm sending 4 vertices each time to the GPU.
Is there any other approach that could be faster?
I'm using OpenGL ES 1.1 (iPhone)
Thanks!
Every draw call you make (glDrawArrays) is expensive. Doing this once per particle is DEFINITELY way too often. All your particles can be drawn with a single draw call; just set up a big array of all the triangle verts and another big array with the texture coords, and call glVertexPointer/glDrawArrays once-- that's the power of glVertexPointer: arbitrary geometry of the same type in one call. :)
For what you're doing, you should also look into point sprites (GL_POINTS), which also function as tiny textured quads. They're 2D only, so you can't map your texture into the Z axis, but if your particles are just 2D quads of the same texture over and over, point sprites will likely do exactly what you want.
There's a way to do that all in one draw routine. I THINK it's by adding an extra vertex after each quad, which is the same as the previous vertex, but I could be wrong.
EDIT: After looking into it a bit, it looks like you need two in between; essentially one after, and one before. It does add up to quite a few extra vertexes, but I know from experience that it makes a HUGE positive difference on the iPhone to do it all in one draw operation (we were drawing text from a texture, so essentially the same thing).
EDIT2: Also note, I'm referring to using GL_TRIANGLE_STRIP - if you were using GL_TRIANGLES instead, you wouldn't need the extra vertices... except, then you'd be doing the same amount extra anyway, due to repeating 2 for each second triangle.