Problem with very small numbers? - iphone

I tried to assign a very small number to a double value, like so:
double verySmall = 0.000000001;
9 fractional digits. For some reason, when I multiplicate this value by 10, I get something like 0.000000007. I slighly remember there were problems writing big numbers like this in plain text into source code. Do I have to wrap it in some function or a directive in order to feed it correctly to the compiler? Or is it fine to type in such small numbers in text?

The problem is with floating point arithmetic not with writing literals in source code. It is not designed to be exact. The best way around is to not use the built in double - use integers only (if possible) with power of 10 coefficients, sum everything up and display the final useful figure after rounding.

Standard floating point numbers are not stored in a perfect format, they're stored in a format that's fairly compact and fairly easy to perform math on. They are imprecise at surprisingly small precision levels. But fast. More here.
If you're dealing with very small numbers, you'll want to see if Objective-C or Cocoa provides something analagous to the java.math.BigDecimal class in Java. This is precisely for dealing with numbers where precision is more important than speed. If there isn't one, you may need to port it (the source to BigDecimal is available and fairly straightforward).
EDIT: iKenndac points out the NSDecimalNumber class, which is the analogue for java.math.BigDecimal. No port required.

As usual, you need to read stuff like this in order to learn more about how floating-point numbers work on computers. You cannot expect to be able to store any random fraction with perfect results, just as you can't expect to store any random integer. There are bits at the bottom, and their numbers are limited.

Related

What's the correct number type for financial variables in Swift?

I am used to programming in Java, where the BigDecimal type is the best for storing financial values, since there are manners to specify rounding rules over the calculations.
In the latest swift version (2.1 at the time this post is written), which native type better supports correct calculations and rounding for financial values? Is there any equivalent to java's BigDecimal? Or anything similar?
You can use NSDecimal or NSDecimalNumber for arbitrary precision numbers.
See more on NSDecimalNumbers's reference page.
If you are concerned about storing for example $1.23 in a float or double, and the potential inaccuracies you will get from floating point precision errors, that is if you actually want to stick to integer amounts of cents or pence (or whatever else). Then use an integer to store your value and use the pence/cent as your unit instead of pounds/dollars. You will then be 100% accurate when dealing in integer amounts of pence/cents, and it's easier than using a class like NSDecimalNumber. The display of that value is then purely a presentation issue.
If however you need to deal with fractions of a pence/cent, then NSDecimalNumber is probably what you want.
I recommend looking into how classes like this actually work, and how floating point numbers work too, because having an understanding of this will help you to see why precision errors arise and just what the precision limits are of a class like NSDecimalNumber, why it's better for storing decimal numbers, why floats are good at storing numbers like 17/262144 (i.e. where the denominator is a power of two) but can't store 1/100, etc.

Is Cross-Platform Double Math Determinism Possible with Rounding?

I understand that there can be a .000000000000001 margin of error for double math and this is be made worse by multiplication to make the margin of error larger. With that said, is it possible to round off every calculation to a significant digit (maybe 4 decimal places) to achieve consistency across all platforms? Would it simply be more efficient using decimal math or will decimal math require similar rounding?
I will be using this for my lockstep RTS game which requires a deterministic physics engine for synchronous multiplayer. I'm using C#. Some calculations and some calculations I wish to perform include Sqrt, Sin, and Pow of the System.Math library.
I've actually been thinking about the whole matter in the wrong way. Instead of trying to minimize errors with greater accuracy (and more overhead), I should just use a type that stores and operates deterministically. I used the answer here: Fixed point math in c#? which helped me create a fixed point type that works perfectly and efficiently.

Irrational number representation in computer

We can write a simple Rational Number class using two integers representing A/B with B != 0.
If we want to represent an irrational number class (storing and computing), the first thing came to my mind is to use floating point, which means use IEEE 754 standard (binary fraction). This is because irrational number must be approximated.
Is there another way to write irrational number class other than using binary fraction (whether they conserve memory space or not) ?
I studied jsbeuno's solution using Python: Irrational number representation in any programming language?
He's still using the built-in floating point to store.
This is not homework.
Thank you for your time.
With a cardinality argument, there are much more irrational numbers than rational ones. (and the number of IEEE754 floating point numbers is finite, probably less than 2^64).
You can represent numbers with something else than fractions (e.g. logarithmically).
jsbeuno is storing the number as a base and a radix and using those when doing calcs with other irrational numbers; he's only using the float representation for output.
If you want to get fancier, you can define the base and the radix as rational numbers (with two integers) as described above, or make them themselves irrational numbers.
To make something thoroughly useful, though, you'll end up replicating a symbolic math package.
You can always use symbolic math, where items are stored exactly as they are and calculations are deferred until they can be performed with precision above some threshold.
For example, say you performed two operations on a non-irrational number like 2, one to take the square root and then one to square that. With limited precision, you may get something like:
(√2)²
= 1.414213562²
= 1.999999999
However, storing symbolic math would allow you to store the result of √2 as √2 rather than an approximation of it, then realise that (√x)² is equivalent to x, removing the possibility of error.
Now that obviously involves a more complicated encoding that simple IEEE754 but it's not impossible to achieve.

Are there any real-world uses for converting numbers between different bases?

I know that we need to convert decimal, octal, and hexadecimal into binary, but I am confused about conversion of decimal to octal or octal to hexadecimal or decimal to hexadecimal.
Why and where we need these types of conversion?
Different bases are good for different purposes.
Decimal is obviously what most people know how to deal with, so is good for output of real quantities to end users.
Hex is short and has an even ratio of exactly 2 characters per byte, so it's good for expressing large numbers like SHA1 hashes or private keys and the like in a type-able format, particularly since those numbers don't really represent a quantity, so users don't need to be able to understand them as numbers.
Octal is mostly for legacy reasons -- UNIX file permission codes are traditionally expressed as octal numbers, for example, because three bits per digit corresponds nicely to the three bits per user-category of the UNIX permission encoding scheme.
One sometimes will want to use numbers in one base for a purpose where another base is desired. Thus, the various conversion functions available. In truth, however, my experience is that in practice you almost never convert from one base to another much, except to convert numbers from some non-binary base into binary (in the form of your language of choice's native integral type) and back out into whatever base you need to output. Most of the time one goes from one non-binary base to another is when learning about bases and getting a feel for what numbers in different bases look like, or when debugging using hexadecimal output. Even then, if a computer does it the main method is to convert to binary and then back out, because current computers are just inherently good at dealing with base-2 numbers and not-so-good at anything else.
One important place you see numbers actually stored and operated on in decimal is in some financial applications or others where it's important that "number-of-decimal-place" level precision be preserved. Sometimes fixed-point arithmetic can work for currency, but not always, and if it doesn't using binary-floating-point is a bad idea. Older systems actually had built in support for this in the form of binary-coded-decimal arithmetic. In BCD, each 4 bits acts as a decimal digit, so you give up a chunk of every 4 bits of storage in exchange for maintaining your level of precision in the base-of-choice of the non-computing world.
Oddly enough, there is one common use case for other bases that's a bit hidden. Modern languages with large number support (e.g. Python 2.x's long type or Java's BigInteger and BigDecimal type) will usually store the numbers internally in an array with each element being a digit in some base. Then they implement the math they support on strings of digits of that base. Really efficient bigint implementations may actually use use a base approaching 2^(bits in machine native word size); a base 2^64 number is obviously impossible to usefully output in that form, but doing the calculations in chunks of that size ends up making the best use of space and the CPU. (I don't know if that's the best base; it may be best to use a base of half that number of bits to simplify overflow handling from one digit to the next. It's been awhile since I wrote my own bigint and I never implemented the faster/more-complicated versions of multiplication and division.)
MIME uses hexadecimal system for Quoted Printable encoding (e.g. mail subject in Unicode) abd 64-based system for Base64 encoding.
If your workplace is stuck in IPv4 CIDR - you'll be doing quite a lot of bin -> hex -> decimal conversions managing most of the networking equipment until you get them memorized (or just use some random, simple tool).
Even that usage is a bit few-and-far-between - most businesses just adopt the lazy "/24 everything" approach.
If you do a lot of graphics work - there's the chance you'll want to convert colors between systems and need to convert from hex -> dec... most tools have this built in to the color picker, though.
I suppose there's no practical reason to be able to do other than it's really simple and there's no point not learning how to do it. :)
... unless, for some reason, you're trying to do mantissa binary math in your head.
All of these bases have their uses. Hexadecimal in particular is useful as a shorthand for binary. Every hexadecimal digit is equivalent to 4 bits, so you can write a full 32-bit value as a string of 8 hex digits. Likewise, octal digits are equivalent to 3 bits, and are used frequently as a shorthand for things like Unix file permissions (777 = set read, write, execute bits for user/group/other).
No one base is special--they all have their (obscure) uses. Decimal is special to us because it reflects human experience (10 fingers) but that's really the only reason.
A real world use case: a program prints error code in decimal, to get info from a database or the internet you need the hexadecimal format, because the bits of the error 'number' convey extra info you need to look at it in binary.
I'm there are occasional uses for this. One use case would be a little app that allows user who wants to convert decimal to octal ... like you can with lots of calculators.
But I'm not sure I understand the point of the question. Standard libraries typically don't provide methods like String toOctal(String decimal). Instead, you would normally convert from a decimal String to a primitive integer and then from the primitive integer to (say) an octal String.

Arbitrary precision Float numbers on JavaScript

I have some inputs on my site representing floating point numbers with up to ten precision digits (in decimal). At some point, in the client side validation code, I need to compare a couple of those values to see if they are equal or not, and here, as you would expect, the intrinsics of IEEE754 make that simple check fails with things like (2.0000000000==2.0000000001) = true.
I may break the floating point number in two longs for each side of the dot, make each side a 64 bit long and do my comparisons manually, but it looks so ugly!
Any decent Javascript library to handle arbitrary (or at least guaranteed) precision float numbers on Javascript?
Thanks in advance!
PS: A GWT based solution has a ++
There is the GWT-MATH library at http://code.google.com/p/gwt-math/.
However, I warn you, it's a GWT jsni overlay of a java->javascript automated conversion of java.BigDecimal (actually the old com.ibm.math.BigDecimal).
It works, but speedy it is not. (Nor lean. It will pad on a good 70k into your project).
At my workplace, we are working on a fixed point simple decimal, but nothing worth releasing yet. :(
Use an arbitrary precision integer library such as silentmatt’s javascript-biginteger, which can store and calculate with integers of any arbitrary size.
Since you want ten decimal places, you’ll need to store the value n as n×10^10. For example, store 1 as 10000000000 (ten zeroes), 1.5 as 15000000000 (nine zeroes), etc. To display the value to the user, simply place a decimal point in front of the tenth-last character (and then cut off any trailing zeroes if you want).
Alternatively you could store a numerator and a denominator as bigintegers, which would then allow you arbitrarily precise fractional values (but beware – fractional values tend to get very big very quickly).