I've got a really long running SQL query (data import, etc). It's crap - it uses cursors and it running slowly. It's doing it, so I'm not too worried about performance.
Anyways, can I pause it for a while (instead of canceling the query)?
It chews up a a bit of CPU so i was hoping to pause it, do some other stuff ... then resume it.
I'm assuming the answer is 'NO' because of how rows and data gets locked, etc.
I'm using Sql Server 2008, btw.
The best approximation I know for what you're looking for is
BEGIN
WAITFOR DELAY 'TIME';
EXECUTE XXXX;
END;
GO
Not only can you not pause it, doing so would be bad. SQL queries hold locks (for transactional integrity), and if you paused the query, it would have to hold any locks while it was paused. This could really slow down other queries running on the server.
Rather than pause it, I would write the query so that it can be terminated, and pick up from where it left off when it is restarted. This requires work on your part as a query author, but it's the only feasible approach if you want to interrupt and resume the query. It's a good idea for other reasons as well: long running queries are often interrupted anyway.
Click the debug button instead of execute. SQL 2008 introduced the ability to debug queries on the fly. Put a breakpoint at convenient locations
When working on similar situations, where I was trying to go through an entire list of data, which could be huge, and could tell which ones I have visited already, I would run the processing in chunks.
update or whatever
where (still not done)
limit 1000
And then I would just keep running the query until there are no rows being modified. This breaks the locks up into reasonable time chunks and can allow you to do thinks like move tens of millions of rows between tables while a system is in production.
Jacob
Instead of pausing the script, perhaps you could use resource governor. That way you could allow the script to run in the background without severely impacting performance of other tasks.
MSDN-Resource Governor
Related
now I am hitting a very big road block.
I use PostgreSQL 10 and its new table partitioning.
Sometimes many queries don't return and at the time many backend processes are active when I check backend processes by pg_stat_activity.
First, I thought theses process are just waiting for lock, but these transactions contain only SELECT statements and the other backend doesn't use any query which requires ACCESS EXCLUSIVE lock. And these queries which contain only SELECT statements are no problem in terms of plan. And usually these work well. And computer resources(CPU, memory, IO, Network) are also no problem. Therefore, theses transations should never conflict. And I thoughrouly checked the locks of theses transaction by pg_locks and pg_blocking_pids() and finnaly I couldn't find any lock which makes queries much slower. Many of backends which are active holds only ACCESS SHARE because they use only SELECT.
Now I think these phenomenon are not caused by lock, but something related to new table partition.
So, why are many backends active?
Could anyone help me?
Any comments are highly appreciated.
The blow figure is a part of the result of pg_stat_activity.
If you want any additional information, please tell me.
EDIT
My query dosen't handle large data. The return type is like this:
uuid UUID
,number BIGINT
,title TEXT
,type1 TEXT
,data_json JSONB
,type2 TEXT
,uuid_array UUID[]
,count BIGINT
Because it has JSONB column, I cannot caluculate the exact value, but it is not large JSON.
Normally theses queries are moderately fast(around 1.5s), so it is absolutely no problem, however when other processes work, the phenomenon happens.
If statistic information is wrong, the query are always slow.
EDIT2
This is the stat. There are almost 100 connections, so I couldn't show all stat.
For me it looks like application problem, not postresql's one. active status means that your transaction still was not commited.
So why do you application may not send commit to database?
Try to review when do you open transaction, read data, commit transaction and rollback transaction in your application code.
EDIT:
By the way, to be sure try to check resource usage before problem appear and when your queries start hanging. Try to run top and iotop to check if postgres really start eating your cpu or disk like crazy when problem appears. If not, I will suggest to look for problem in your application.
Thank you everyone.
I finally solved this problem.
I noticed that a backend process holded too many locks. So, when I executed the query SELECT COUNT(*) FROM pg_locks WHERE pid = <pid>, the result is about 10000.
The parameter of locks_per_transactions is 64 and max_connections is about 800.
So, if the number of query that holds many locks is large, the memory shortage occurs(see calculation code of shared memory inside PostgreSQL if you are interested.).
And too many locks were caused when I execute query like SELECT * FROM (partitioned table). Imangine you have a table foo that is partitioned and the number of the table is 1000. And then you can execute SELECT * FROM foo WHERE partion_id = <id> and the backend process will hold about 1000 table locks(and index locks). So, I change the query from SELECT * FROM foo WHERE partition_id = <id> to SELECT * FROM foo_(partitioned_id). As the result, the problem looks solved.
You say
Sometimes many queries don't return
...however when other processes work, the phenomenon happens. If statistic
information is wrong, the query are always slow.
They don't return/are slow when directly connecting to the Postgres instance and running the query you need, or when running the queries from an application? The backend processes that are running, are you able to kill them successfully with pg_terminate_backend($PID) or does that have issues? To rule out issues with the statement itself, make sure statement_timeout is set to a reasonable amount to kill off long-running queries. After that is ruled out, perhaps you are running into a case of an application hanging and never allowing the send calls from PostgreSQL to finish. To avoid a situation like that, if you are able to (depending on OS) you can tune the keep-alive time: https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-TCP-KEEPALIVES-IDLE (by default is 2 hours)
Let us know if playing with any of that gives any more insight into your issue.
Sorry for late post, As #Konstantin pointed out, this might be because of your application(which is why I asked for your EDIT2). Adding a few excerpts,
table partition has no effect on these locks, that is a totally different concept and does not hold up locks in your case.
In your application, check if the connection properly close() after read() and is in finally block (From Java perspective). I am not sure of your application tier.
Check if SELECT..FOR UPDATE or any similar statement is written erroneously recently which is causing this.
Check if any table has grown in size recently and the column is not Indexed. This is very important and frequent cause of select statements running for some minutes. I'd also suggest using timeouts for select statements in your application. https://www.postgresql.org/docs/9.5/gin-intro.html This can give you a headstart.
Another thing that is fishy to me is the JSONB column, maybe your Jsonb values are pretty long, or the queries are unnecessarily selecting JSONB value even if not required?
Finally, If you don't need some special features of Jsonb data type, then you use JSON data type which is faster (magical maximum, sometimes 50x!)
It looks like the pooled connections not getting closed properly and a few queries might be taking huge time to respond back. As pointed out in other answers, it is the problem with the application and could be connection leak. Most possibly, it might be because of pending transactions over some already pending and unresolved transactions, leading to a number of unclosed transactions.
In addition, PostgreSQL generally has one or more "helper" processes like the stats collector, background writer, autovaccum daemon, walsender, etc, all of which show up as "postgres" instances.
One thing I would suggest you check in which part of the code you have initiated the queries. Try to DRY run your queries outside the application and have some benchmarking of queries performance.
Secondly, you can keep some timeout for certain queries if not all.
Thirdly, you can do kill the idle transactions after certain timeouts by using:
SET SESSION idle_in_transaction_session_timeout = '5min';
I hope it might work. Cheers!
I want to know how long my queries take to execute, so that I can see whether my changes improve the runtime or not.
Simply timing the executing of the whole query is unsuitable, since this also takes into account the (highly variable) time spent waiting in an execution queue.
Redshift provides the STL_WLM_QUERY table that contains separate columns for queue wait time and execution time. However, my queries do not reliably show up in this table. For example if I execute the same query multiple times the number of corresponding rows in STL_WLM_QUERY is often much smaller than the number of repetitions. Sometimes, but not always, only one row is generated no matter how often I run the query. I suspect some caching is going on.
Is there a better way to find the actual execution time of a Redshift query, or can someone at least explain under what circumstances exactly a row in STL_WLM_QUERY is generated?
My tips
If possible, ensure that your query has not waited at all, if it has
there should be a row on stl_wlm_query. If it did wait - then rerun
it.
Run the query once to compile it, then a second time to benchmark
it. compile time can be significant
Disable the new query result caching feature (if you have it yet -
you probably don't)
(https://aws.amazon.com/about-aws/whats-new/2017/11/amazon-redshift-introduces-result-caching-for-sub-second-response-for-repeat-queries/)
We have multiple processes which read one database table, get available record and work with it. It works fine.
When there is no record in this table each process waits 5 seconds and reads it again.
So, record could idle in the table for 5 seconds which is not good.
What would be recommended solution to eliminate such waiting and proceed immediately when record is created? One solution could be trigger which does something when record created. But this solution requires knowledge of working processes to deliver record to the one of idle processes.
It looks that ideal solution would be when each process starts to read via SQL from something and when record is created one of waiting processes will have it record and other will continue to wait.
Does Oracle 10 provide such or similar mechanism?
Look at Database Change Notification in 10g, which has since been renamed Continuous Query Notification.
I normally like to include an example but it's hard to find a 10g instance these days, and even a short example requires a lot of code. The process looks complicated, it might be better off to use triggers as you suggested, and deal with the tight coupling.
I have a table called deposits
When a deposit is made, the table is locked, so the query looks something like:
SELECT * FROM deposits WHERE id=123 FOR UPDATE
I assume FOR UPDATE is locking the table so that we can manipulate it without another thread stomping on the data.
The problem occurs though, when other deposits are trying to get the lock for the table. What happens is, somewhere in between locking the table and calling psql_commit() something is failing and keeping the lock for a stupidly long amount of time. There are a couple of things I need help addressing:
Subsequent queries trying to get the lock should fail, I have tried achieving this with NOWAIT but would prefer a timeout method (because it may be ok to wait, just not wait for a 'stupid amount of time')
Ideally I would head this off at the pass, and have my initial query only hold the lock for a certain amount of time, is this possible with postgresql?
Is there some other magic function I can tack onto the query (similar to NOWAIT) which will only wait for the lock for 4 seconds before failing?
Due to the painfully monolithic spaghetti code nature of the code base, its not simply a matter of changing global configs, it kinda needs to be a per-query based solution
Thanks for your help guys, I will keep poking around but I haven't had much luck. Is this a non-existing function of psql, because I found this: http://www.postgresql.org/message-id/40286F1F.8050703#optusnet.com.au
I assume FOR UPDATE is locking the table so that we can manipulate it without another thread stomping on the data.
Nope. FOR UPDATE locks only those rows, so that another transaction that attempts to lock them (with FOR SHARE, FOR UPDATE, UPDATE or DELETE) blocks until your transaction commits or rolls back.
If you want a whole table lock that blocks inserts/updates/deletes you probably want LOCK TABLE ... IN EXCLUSIVE MODE.
Subsequent queries trying to get the lock should fail, I have tried achieving this with NOWAIT but would prefer a timeout method (because it may be ok to wait, just not wait for a 'stupid amount of time')
See the lock_timeout setting. This was added in 9.3 and is not available in older versions.
Crude approximations for older versions can be achieved with statement_timeout, but that can lead to statements being cancelled unnecessarily. If statement_timeout is 1s and a statement waits 950ms on a lock, it might then get the lock and proceed, only to be immediately cancelled by a timeout. Not what you want.
There's no query-level way to set lock_timeout, but you can and should just:
SET LOCAL lock_timeout = '1s';
after you BEGIN a transaction.
Ideally I would head this off at the pass, and have my initial query only hold the lock for a certain amount of time, is this possible with postgresql?
There is a statement timeout, but locks are held at transaction level. There's no transaction timeout feature.
If you're running single-statement transactions you can just set a statement_timeout before running the statement to limit how long it can run for. This isn't quite the same thing as limiting how long it can hold a lock, though, because it might wait 900ms of an allowed 1s for the lock, only actually hold the lock for 100ms, then get cancelled by the timeout.
Is there some other magic function I can tack onto the query (similar to NOWAIT) which will only wait for the lock for 4 seconds before failing?
No. You must:
BEGIN;
SET LOCAL lock_timeout = '4s';
SELECT ....;
COMMIT;
Due to the painfully monolithic spaghetti code nature of the code base, its not simply a matter of changing global configs, it kinda needs to be a per-query based solution
SET LOCAL is suitable, and preferred, for this.
There's no way to do it in the text of the query, it must be a separate statement.
The mailing list post you linked to is a proposal for an imaginary syntax that was never implemented (at least in a public PostgreSQL release) and does not exist.
In a situation like this you may want to consider "optimistic concurrency control", often called "optimistic locking". It gives you greater control over locking behaviour at the cost of increased rates of query repetition and the need for more application logic.
I have an application written on Play Framework 1.2.4 with Hibernate(default C3P0 connection pooling) and PostgreSQL database (9.1).
Recently I turned on slow queries logging ( >= 100 ms) in postgresql.conf and found some issues.
But when I tried to analyze and optimize one particular query, I found that it is blazing fast in psql (0.5 - 1 ms) in comparison to 200-250 ms in the log. The same thing happened with the other queries.
The application and database server is running on the same machine and communicating using localhost interface.
JDBC driver - postgresql-9.0-801.jdbc4
I wonder what could be wrong, because query duration in the log is calculated considering only database processing time excluding external things like network turnarounds etc.
Possibility 1: If the slow queries occur occasionally or in bursts, it could be checkpoint activity. Enable checkpoint logging (log_checkpoints = on), make sure the log level (log_min_messages) is 'info' or lower, and see what turns up. Checkpoints that're taking a long time or happening too often suggest you probably need some checkpoint/WAL and bgwriter tuning. This isn't likely to be the cause if the same statements are always slow and others always perform well.
Possibility 2: Your query plans are different because you're running them directly in psql while Hibernate, via PgJDBC, will at least sometimes be doing a PREPARE and EXECUTE (at the protocol level so you won't see actual statements). For this, compare query performance with PREPARE test_query(...) AS SELECT ... then EXPLAIN ANALYZE EXECUTE test_query(...). The parameters in the PREPARE are type names for the positional parameters ($1,$2,etc); the parameters in the EXECUTE are values.
If the prepared plan is different to the one-off plan, you can set PgJDBC's prepare threshold via connection parameters to tell it never to use server-side prepared statements.
This difference between the plans of prepared and unprepared statements should go away in PostgreSQL 9.2. It's been a long-standing wart, but Tom Lane dealt with it for the up-coming release.
It's very hard to say for sure without knowing all the details of your system, but I can think of a couple of possibilities:
The query results are cached. If you run the same query twice in a short space of time, it will almost always complete much more quickly on the second pass. PostgreSQL maintains a cache of recently retrieved data for just this purpose. If you are pulling the queries from the tail of your log and executing them immediately this could be what's happening.
Other processes are interfering. The execution time for a query varies depending on what else is going on in the system. If the queries are taking 100ms during peak hour on your website when a lot of users are connected but only 1ms when you try them again late at night this could be what's happening.
The point is you are correct that the query duration isn't affected by which library or application is calling it, so the difference must be coming from something else. Keep looking, good luck!
There are several possible reasons. First if the database was very busy when the slow queries excuted, the query may be slower. So you may need to observe the load of the OS at that moment for future analysis.
Second the history plan of the sql may be different from the current session plan. So you may need to install auto_explain to see the actual plan of the slow query.