Upon some research I found two functions in MATLAB to do the task:
cvpartition function in the Statistics Toolbox
crossvalind function in the Bioinformatics Toolbox
Now I've used the cvpartition to create n-fold cross validation subsets before, along with the Dataset/Nominal classes from the Statistics toolbox. So I'm just wondering what are the differences between the two and the pros/cons of each?
Expanding on #Mr Fooz's answer
They look to be pretty similar based on the official docs of cvpartition and crossvalind, but crossvalind looks slightly more flexible (it allows for leave M out for arbitrary M, whereas cvpartition only allows for leave 1 out).
... isn't it true that you can always simulate a leave-M-out using kfold cross validation with an appropriate k value (split data into k fold, test on one, train on all others, and do this for all folds and take average) since leave-one-out is a special case of kfold where k=number of observations?
Amro, this is not directly an answer to your cvpartition vs crossvalind question, but there is a contribution at the Mathworks File Exchange called MulticlassGentleAdaboosting by user Sebastian Paris that includes a nice set of functions for enumerating array indices for computing training, testing and validation sets for the following sampling and cross-validation strategies:
Hold out
Bootstrap
K Cross-validation
Leave One Out
Stratified Cross Validation
Balanced Stratified Cross Validation
Stratified Hold out
Stratified Boot Strap
For details, see the demo files included in the package, and more specifically the functions sampling.m and sampling_set.m.
They look to be pretty similar based on the official docs of cvpartition and crossvalind, but crossvalind looks slightly more flexible (it allows for leave M out for arbitrary M, whereas cvpartition only allows for leave 1 out).
I know your question is not directly referring to the Neural network toolbox, but perhaps someone else might find this useful. To get your ANN input data seperated in to test/validation/train data, use the 'net.divideFcn' variable.
net.divideFcn = 'divideind';
net.divideParam.trainInd=1:94; % The first 94 inputs are for training.
net.divideParam.valInd=1:94; % The first 94 inputs are for validation.
net.divideParam.testInd=95:100; % The last 5 inputs are for testing the network.
Related
I'm trying to perform logistic regression to do classification using MATLAB. There seem to be two different methods in MATLAB's statistics toolbox to build a generalized linear model 'glmfit' and 'fitglm'. I can't figure out what the difference is between the two. Is one preferable over the other?
Here are the links for the function descriptions.
http://uk.mathworks.com/help/stats/glmfit.html
http://uk.mathworks.com/help/stats/fitglm.html
The difference is what the functions output. glmfit just outputs a vector of the regression coefficients (and some other stuff if you ask for it). fitglm outputs a regression object that packs all sorts of information and functionality inside (See the docs on GeneralizedLinearModel class). I would assume the fitglm is intended to replace glmfit.
In addition to Dan's answer, I would like to add the following.
The function fitglm, like newer functions from the statistics toolbox, accepts more flexible inputs than glmfit. For example, you can use a table as the data source, specifyy a formula of the form Y ~ X1 + X2 + ..., and use categorical variables.
As a side note, the function lassoglm uses (depends on) glmfit.
I have a 40X3249 noisy dataset and 40X1 resultset. I want to perform simple sequential feature selection on it, in Matlab. Matlab example is complicated and I can't follow it. Even a few examples on SoF didn't help. I want to use decision tree as classifier to perform feature selection. Can someone please explain in simple terms.
Also is it a problem that my dataset has very low number of observations compared to the number of features?
I am following this example: Sequential feature selection Matlab and I am getting error like this:
The pooled covariance matrix of TRAINING must be positive definite.
I've explained the error message you're getting in answers to your previous questions.
In general, it is a problem that you have many more variables than samples. This will prevent you using some techniques, such as the discriminant analysis you were attempting, but it's a problem anyway. The fact is that if you have that high a ratio of variables to samples, it is very likely that some combination of variables would perfectly classify your dataset even if they were all random numbers. That's true if you build a single decision tree model, and even more true if you are using a feature selection method to explicitly search through combinations of variables.
I would suggest you try some sort of dimensionality reduction method. If all of your variables are continuous, you could try PCA as suggested by #user1207217. Alternatively you could use a latent variable method for model-building, such as PLS (plsregress in MATLAB).
If you're still intent on using sequential feature selection with a decision tree on this dataset, then you should be able to modify the example in the question you linked to, replacing the call to classify with one to classregtree.
This error comes from the use of the classify function in that question, which is performing LDA. This error occurs when the data is rank deficient (or in other words, some features are almost exactly correlated). In order to overcome this, you should project the data down to a lower dimensional subspace. Principal component analysis can do this for you. See here for more details on how to use pca function within statistics toolbox of Matlab.
[basis, scores, ~] = pca(X); % Find the basis functions and their weighting, X is row vectors
indices = find(scores > eps(2*max(scores))); % This is to find irrelevant components up to machine precision of the biggest component .. with a litte extra tolerance (2x)
new_basis = basis(:, indices); % This gets us the relevant components, which are stored in variable "basis" as column vectors
X_new = X*new_basis; % inner products between the new basis functions spanning some subspace of the original, and the original feature vectors
This should get you automatic projections down into a relevant subspace. Note that your features won't have the same meaning as before, because they will be weighted combinations of the old features.
Extra note: If you don't want to change your feature representation, then instead of classify, you need to use something which works with rank deficient data. You could roll your own version of penalised discriminant analysis (which is quite simple), use support vector machines, or other classification functions which don't break with correlated features as LDA does (by virtue of requiring matrix inversion of the covariance estimate).
EDIT: P.S I haven't tested this, because I have rolled my own version of PCA in Matlab.
I have a large dataset of multidimensional data (240 dimensions).
I am a beginner at performing data mining and I want to apply Linear Discriminant Analysis by using MATLAB. However, I have seen that there are a lot of functions explained on the web but I do not understand how should they be applied.
Basically, I want to apply LDA.
After this step I want to be able to do a reconstruction for my data.
I can do this manually, but I was wondering if there are any predefined functions which can do this because they should already be optimized.
My initial data is something like: size(x) = [2000 240]. So basically I have 240 features (dimensions) and 2000 data points. And I want to perform LDA on this data set.
The function classify from Statistics Toolbox does Linear (and, if you set some options, Quadratic) Discriminant Analysis. There are a couple of worked examples in the documentation that explain how it should be used: type doc classify or showdemo classdemo to see them.
240 features is quite a lot given that you only have 2000 observations, even if you have only two classes. You might want to apply a dimension reduction method before LDA, such as PCA (see doc princomp) or use a feature selection method (see doc sequentialfs for one such method).
you can use fitcdiscr for classification using LDA in matlab 2014
I am new to using Matlab and am trying to follow the example in the Bioinformatics Toolbox documentation (SVM Classification with Cross Validation) to handle a classification problem.
However, I am not able to understand Step 9, which says:
Set up a function that takes an input z=[rbf_sigma,boxconstraint], and returns the cross-validation value of exp(z).
The reason to take exp(z) is twofold:
rbf_sigma and boxconstraint must be positive.
You should look at points spaced approximately exponentially apart.
This function handle computes the cross validation at parameters
exp([rbf_sigma,boxconstraint]):
minfn = #(z)crossval('mcr',cdata,grp,'Predfun', ...
#(xtrain,ytrain,xtest)crossfun(xtrain,ytrain,...
xtest,exp(z(1)),exp(z(2))),'partition',c);
What is the function that I should be implementing here? Is it exp or minfn? I will appreciate if you can give me the code for this section. Thanks.
I will like to know what does it mean when it says exp([rbf_sigma,boxconstraint])
rbf_sigma: The svm is using a gaussian kernel, the rbf_sigma set the standard deviation (~size) of the kernel. To understand how kernels work, the SVM is putting the kernel around every sample (so that you have a gaussian around every sample). Then the kernels are added up (sumed) for the samples of each category/type. At each point the type which sum is higher would be the "winner". For example if type A has a higher sum of these kernels at point X, then if you have a new datum to classify in point X, it will be classified as type A. (there are other configuration parameters that may change the actual threshold where a category is selected over another)
Fig. Analyze this figure from the webpage you gave us. You can see how by adding up the gaussian kernels on the red samples "sumA", and on the green samples "sumB"; it is logical that sumA>sumB in the center part of the figure. It is also logical that sumB>sumA in the outer part of the image.
boxconstraint: it is a cost/penalty over miss-classified data. During the training stage of the classifier, where you use the training data to adjust the SVM parameters, the training algorithm is using an error function to decide how to optimize the SVM parameters in an iterative fashion. The cost for a miss-classified sample is proportional to how far it is from the boundary where it would have been classified correctly. In the figure that I am attaching the boundary is the inner blue circumference.
Taking into account BGreene indications and from what I understand of the tutorial:
In the tutorial they advice to try values for rbf_sigma and boxconstraint that are exponentially apart. This means that you should compare values like {0.2, 2, 20, ...} (note that this is {2*10^(i-2), i=1,2,3,...}), and NOT like {0.2, 0.3, 0.4, 0.5} (which would be linearly apart). They advice this to try a wide range of values first. You can further optimize later FROM the first optimum that you obtained before.
The command "[searchmin fval] = fminsearch(minfn,randn(2,1),opts)" will give you back the optimum values for rbf_sigma and boxconstraint. Probably you have to use exp(z) because it affects how fminsearch increments the values of z(1) and z(2) during the search for the optimum value. I suppose that when you put exp(z(1)) in the definition of #minfn, then fminsearch will take 'exponentially' big steps.
In machine learning, always try to understand that there are three subsets in your data: training data, cross-validation data, and test data. The training set is used to optimize the parameters of the SVM classifier for EACH value of rbf_sigma and boxconstraint. Then the cross validation set is used to select the optimum value of the parameters rbf_sigma and boxconstraint. And finally the test data is used to obtain an idea of the performance of your classifier (the efficiency of the classifier is determined upon the test set).
So, if you start with 10000 samples you may divide the data for example as training(50%), cross-validation(25%), test(25%). So that you will sample randomly 5000 samples for the training set, then 2500 samples from the 5000 remaining samples for the cross-validation set, and the rest of samples (that is 2500) would be separated for the test set.
I hope that I could clarify your doubts. By the way, if you are interested in the optimization of the parameters of classifiers and machine learning algorithms I strongly suggest that you follow this free course -> www.ml-class.org (it is awesome, really).
You need to implement a function called crossfun (see example).
The function handle minfn is passed to fminsearch to be minimized.
exp([rbf_sigma,boxconstraint]) is the quantity being optimized to minimize classification error.
There are a number of functions nested within this function handle:
- crossval is producing the classification error based on cross validation using partition c
- crossfun - classifies data using an SVM
- fminsearch - optimizes SVM hyperparameters to minimize classification error
Hope this helps
I have a set of 100 observations where each observation has 45 characteristics. And each one of those observations have a label attached which I want to predict based on those 45 characteristics. So it's an input matrix with the dimension 45 x 100 and a target matrix with the dimension 1 x 100.
The thing is that I want to know how many of those 45 characteristics are relevant in my set of data, basically the principal component analysis, and I understand that I can do this with Matlab function processpca.
Could you please tell me how can I do this? Suppose that the input matrix is x with 45 rows and 100 columns and y is a vector with 100 elements.
Assuming that you want to construct a model of the 1x100 vector, based on the 45x100 matrix, I am not convinced that PCA will do what you think. PCA can be used to select variables for model estimation, but this is a somewhat indirect way to gather a set of model features. Anyway, I suggest reading both:
Principal Components Analysis
and...
Putting PCA to Work
...both of which provide code in MATLAB not requiring any Toolboxes.
Have you tried COEFF = princomp(x)?
COEFF = princomp(X) performs principal
components analysis (PCA) on the
n-by-p data matrix X, and returns the
principal component coefficients, also
known as loadings. Rows of X
correspond to observations, columns to
variables. COEFF is a p-by-p matrix,
each column containing coefficients
for one principal component. The
columns are in order of decreasing
component variance.
From your question I deduced you don't need to do it in MATLAB, but you just want to analyze your dataset. According to my opinion the key is visualization of the dependencies.
If you're not forced to do the analysis in MATLAB I'd suggest you try more specialized software something like WEKA (www.cs.waikato.ac.nz/ml/weka/) or RapidMiner (rapid-i.com). Both tools can provide PCA and other dimension reduction algorithms + they contain nice visualization tools.
Your use case sounds like a combination of Classification and Feature Selection.
Statistics Toolbox offers a lot of good capabilities in this area. The toolbox provides access to a number of classification algorithms including
Naive Bayes Classifiers Bagged
Decision Trees (aka Random Forests)
Binomial and Multinominal logistic regression
Linear Discriminant analysis
You also have a variety of options available for feature selection include
sequentialfs (forwards and backwards feature selection)
relifF
"treebagger" also supports options for feature selection and estimating variable importance.
Alternatively, you can use some of Optimization Toolbox's capabilities to write your own custom equations to estimate variable importance.
A couple monthes back, I did a webinar for The MathWorks titled "Compuational Statistics: Getting Started with Classification using MTALAB". You can watch the Webinar at
http://www.mathworks.com/company/events/webinars/wbnr51468.html?id=51468&p1=772996255&p2=772996273
The code and the data set for the examples is available at MATLAB Central
http://www.mathworks.com/matlabcentral/fileexchange/28770
With all this said and done, many people using Principal Component Analysis as a pre-processing step before applying classification algorithms. PCA gets used alot
When you need to extract features from images
When you're worried about multicollinearity
You should find correlation matrix. in the following example matlab finds correlation matrix with 'corr' function
http://www.mathworks.com/help/stats/feature-transformation.html#f75476