I have an application with multiple views. It works pretty fine without any leaks or crashes. But when you run using performance tool for leaks, I see when I switch through multiple views and comeback to home screen, my overall size of the application gets increased. Like if its 1.53MB after visiting 4-5 different views and getting back to screen increases the consumption to 1.58MB or less but definitely greater than 1.53MB.
I tried resolving this issue but not able to figure out where I am going wrong since there are no memory leaks.
Does anyone know what could be the problem?
Will apple reject my application on this basis?
I would go back and forth between the screens many many many many times (at least one hundred times). If the memory continues to grow (linearly) during that time, you have a problem. If the memory stabilizes, you might be okay.
Definitely keep trying to fix you memory leaks. But if it's small, I doubt Apple will notice it. I mean, their own apps leak some too. You could get rejected for it, sure. But realistically, leaking a few bytes here and there shouldn't prevent an approval by itself.
(Source, 2 apps approved, one with the same issue, a tiny little memory leak I couldn't track down. I submitted it and was approved. Shortly after, I found and fixed it and released it as part of an update).
If an application has an increasing memory footprint on a known stable state for example named A after going into and coming back from state B which should have no persistent affect on state A and there is no memory leaks this problem called (as much as I know) the lingering memory.
Checklist to be sure if you have lingering memory problem:
App has no memory leaks, or no memory leaks on non-system code when profiled by Instruments.
State A and State B are individually stable states, like in state-machine.
State B has no permanent affect on State A, or it's memory. State A could be a gateway, a menu to another states like State B or State C. But Child states has no or limited info about state A and makes no change about State A.
On loop state changes starts and ends with root state for example A->B->A, A->C->A, A->B->C->A; you encounter increasing memory usage on State A. Memory usage on other child states are not important.
To spot and solve this problem profile your app with instruments. But instead of monitoring leaks, you should monitor allocations and total memory. Every time your app gets to State A, including start, take a memory snapshot. (There is a button for that :D) After snapshot go to State B, State C and use your application as it suppose to. After coming back to root state, in this example State A, take another snapshot. Instruments will show you memory allocations and difference delta in total memory between snapshots. It will also give information about for which object the memory had allocated and when if possible. If it was your code you probably will see the type of class and allocation point. Instruments can not help you about when the object should have been released but when you got the lingering object or memory, figuring out the deallocation point should be much easier.
BUT! Do not forget:
OS and Framework codes could have leaks and lingering memory problems like every OS. If you are sure that it is not your code leaking or lingering in the memory the everything is fine. That was the case in my app and it got approved(App: Tusudoku). System function often use additional memory if there is available, but they immediately release it when received memory warning. Although devices has limited memory, it is a waste if still not used, and using memory does not make memory chip to use measurably increased electrical current. Using memory to the limits for performance and immediately releasing it when someone definitely needs it, is best possible practice. These cache memories does not tend to be grove over time linearly but you should force memory warning every time app gets to root state, in this example State A. So this way you will be sure any cache memory allocated by system or frameworks will be deallocated, then you take the snapshot.
Most of the apps on the App Store® has memory leaks and other memory problems. The question is how this affect user. Non-linear lingering memory with rapidly dropping acceleration on increase velocity generally won't be a reason for rejection. Calculated the memory usage as 15MB for a perfect working app but if it worked, no problem, say that it will reach 20MB limit max ever and you are good to go. So you later fix your memory problems. Bu if your application has a linear or worse increasing memory usage and can not release that memories when needed, that will be a critical problem.
For more information about memory usage please consider reading official documentation and watching WWDC videos(That's where I learned all about memory fixes using Instruments).
There is no set in stone answer.
On the one hand is the fact that your application may have an obscure memory leak would be enough to reject it according to the posted policies.
On the other hand documents submitted to the FCC by Apple (in the AT&T+Apple vs. Google monopoly fight) give enough detail to work out just how much goes into reviewing an app - unless Apple lied the average app is reviewed by 2 people, and each of them spends around 5 minutes and 38 seconds (assuming Apple doesn't give breaks) to determine if your app passes or fails.
So the answer largely depends on if this memory leak can be discovered in the first 5 minutes of examination by some of the most overworked testers in the industry.
If you are using UIImageViews in your views, then part of the extra memory could be the caching that it does. See here.
Sometimes when we load views, and then switch to another, we leave the view around. For example, if you have a rootviewcontroller that has all the views as retained properties. Normally when you remove a subview, it is released, but not if you have it retained in your viewcontoller. As yu can see, that would add up to memory consumed, but not freed. It's not a leak, except that it gets released only when you release or remove the rootviewcontroller.
You could try to go through and find places where memory is tied up like this, or you could justify it based on the added speed of going through views without having to wait for them to reload.
In summary, it is good to know why your views and other objects consume and hold on to memory, but you may find that all those uses are justified, and you want to keep things that way. Having said that, I don't think Apple will be rejecting our app for decisions like this. If your app crashes because of memory usage, then that would get it rejected.
You're describing very typical memory usage.
If your app runs out of memory and crashes while they're testing it, they will reject it. Beyond that, you're fine.
Related
does an entry in Instruments "leaked block" during application running imply memory leak?
That is, if one is half way through using the iPhone application, where you might have some variables that have been retained but it hasn't got to the part of the application where it gets released, then do these show up as leaked blocks or not?
If the answer is that variables which have not been finished with do show up here as leaked blocks, then this would be quite confusing then if you are stopping/pausing instruments, in which case how would one run instruments in a manner whereby any leaked blocks you see are valid memory leaks? (e.g. need to kill application to end everything first and then look at instruments?)
A leak in Instruments indicates that Instruments cannot find a pointer to the allocated memory starting at any of a group of "root" pointers. Specifically, from the Memory Usage Performance Guidelines:
The Leaks instrument records all allocation events that occur in your application and then periodically searches the application’s writable memory, registers, and stack for references to any active memory blocks. If it does not find a reference to a block in one of these places, it deems the block a “leak” and displays the relevant information in the Detail pane.
So retaining something is not a leak as long as you have a pointer to it in one of your ivars, local variables or static variables. But there are ways that the Leaks instrument can get confused, and sometimes Apple has a leak in their frameworks, and sometimes Instruments has a bug.
The thing you're looking for with Leaks are steady and significant increases in the amount of leaked memory either over time or when doing specific actions. Tiny, one-time leaks are generally not worth chasing.
You should split leak testing into logical units, be it view based or functionalities based. Start from the beginning, test your initial view thoroughly, fix issues, move to next view and so on. I recommend running static analyzer before testing for leaks.
I'm wondering what would be the correct approach after executing a command that allocates memory in Objective C (I'm mainly referring to iOS apps).
My dilemma comes from the fact that checking for the success of failure of a memory allocation operation adds lots of lines of code, while wondering whether this is at all useful.
Moreover, sometimes memory allocations are obvious, such as using 'alloc', but sometimes they are taking place behind the scenes. And even if we check each and every allocation - when we find it failed - there isn't much we could actually do. So maybe the correct approach is to just let it fail and have the app crash?
Take a look at this code:
// Explicit memory allocation
NSArray a1 = [[NSArray alloc] initWithObjects:someObj, nil];
if (!a1) {
// Should we make this check at all? Is there really what to do?
}
// Implicit memory allocation
NSArray a2 = [NSArray arrayWithObjects:someObj, nil];
if (!a2) {
// should we make this check at all? Is there really what to do?
}
What in your opinion would be the correct approach? Check or not check for allocation failures? iOS developers out there - how have you handled it in your apps?
Fantasy: Every memory allocation would be checked and any failure would be reported to the user in a friendly fashion, the app would shut down cleanly, a bug report would be sent, you could fix it and the next version would be perfect [in that one case].
Reality: By the time something as trivial as arrayWithObjects: fails, your app was dead long, long, ago. There is no recovery in this case. It is quite likely that the frameworks have already failed an allocation and have already corrupted your app's state.
Furthermore, once something as basic as arrayWithObjects: has failed, you aren't going to be able to tell the user anyway. There is no way that you are going to be able to reliably put a dialog on screen without further allocations.
However, the failure happened much further before your app failed an allocation. Namely, your app should have received a memory warning and should have responded by (a) persisting state so no customer data is lost and (b) freeing up as much memory as possible to avoid catastrophic failure.
Still, a memory warning is the last viable line of defense in the war on memory usage.
Your first assault on memory reduction is in the design and development process. You should consider memory use from the start of the application development process and you must optimize for memory use as you polish your application for publication. Use the Allocations Instrument (see this Heapshot analysis write-up I did a bit ago -- it is highly applicable) and justify the existence of every major consumer of memory.
iPhone apps should register for UIApplicationDidReceiveMemoryWarningNotification notifications. iOS will send these when available memory gets low. Google iphoneappprogrammingguide.pdf (dated 10/12/2011) for more information.
That said, one general approach to the problem I've seen is to reserve a block of memory at app startup as a "cushion". In your code put in a test after each allocation. If an allocation fails, release the cushion so you have enough memory to display an error message and exit. The size of the cushion has to be large enough to accommodate allowing your hobbled app to shutdown nicely. You could determine the size of the cushion by using a memory stress tester.
This is really a tricky problem because it happens so rarely (for well-designed programs). In the PC/mini/mainframe world virtual memory virtually eliminates the problem in but the most pathological programs. In limited memory systems (like smartphones), stress testing your app with a heap monitor tool should give you a good indication of its max memory usage. You could code a high water mark wrapper routine for alloc that does the same thing.
Check them, assert in debug (so you know where/why failures exist), and push the error to the client (in most cases). The client will typically have more context - do they retry with a smaller request? fail somehow? disable a feature? Display an alert to the user, etc, etc. The examples you have provided are not the end of the world, and you can gracefully recover from many - furthermore, you need to (or ought to) know when and where your programs fail.
With the power you have in an Iphone/smartphone, the time it takes to compute a few test is ridiculous to be thinking "is it really worth checking", it is always good test and catch any failures in your code/allocations. (if you don't it sounds more like your lazy to add a few extra lines in your code.
Also "letting the app crash" gives a REALLY poor impression of your application, the user see the app close for no reason and thinks its a poor quality software.
You should always add your tests and if you can't do anything about the error then at least you should display a message before the app closes (makes the user less frustrated).
there a several options when tracking memory allocations, like catching exception. testing if the pointer returned is nil, checking the size of the list etc.
you should think of ways to let your application run in the case the allocation fails:
if it is jsut a view of your interface, display a message saying fail to load the particular view ...
if it is the main and only view, close the application gracefully with a message
...
I don't know what application you are working on but if you are short on memory, you should consider creating a system to allocate a deallocated memory as your progressing in your app, so that you always have the maximum memory available. it might be slightly slower than keeping everything cached but you app quality will improve if you suppress any force close.
I have a navigation based template, when I run my application using Instruments, the very first memory leak comes under:
Leak Object: Malloc 128 bytes
Responsible Library: CoreGraphics
Responsible Frame: open_handle_to_dylib_path
I don't know where this leak is coming from and how remove this.
If it's a default leak, then I think I don't need to worry about it. But if it's not then I have to find a way to remove the leak.
Expanding on deanWombourne perfectly correct answer a bit..
The Leaks Instrument shows you memory that isn't going to be free'd in the normal course of the app (because there aren't any references to it). This in itself is no biggie, it will be free'd when the app exits. A lot of the framework code will allocate and leave these very small chunks of memory allocated. I have no idea if they are mistakes or essential to how the app runs. Whatever, we must accept that they are completely normal.
Leaks will identify these chunks of memory as 'Leaks' and that sounds bad, but this is not really the 'Leaks' that the instrument is there to help you identify.
The 'real' leaks are in the code that can be run many times and which allocate some memory that is never freed, so over time will consume more and more memory until all memory is used and your app will crash.
So if you have an app that no matter how long you use it for or no matter how you use it, it 'leaks' 128 bytes in an apple framework you generally don't have to worry.
However, if you have an app that say, every time you click a button it allocates a new string which is never released - no matter how many bytes the string is - if the user pressed the button enough times this would consume all the memory available to app and eventually crash it. This is the kind of leak you need to watch out for.
The leaks instrument realistically can't tell the difference between the two kinds, but you need to be able to. You might want a kind of singleton object, for example, that there is only ever one instance of, and that needs to exist for the entire lifetime of your app. You create the object on app startup and realistically you never need to free this object, it can be killed when the app exits. Leaks will flag it as a leak, and some other developers that you work with who assume that this means you don't know what you are doing will run to your boss like a little child and say "He's writing really leaky code, and that's reeeeally bad". And your boss, who isn't a programmer will take him seriously because it does sound bad and anyway he scraped a 2.2 in CS from a reputable University so he must know what he's talking about. When really it is completely reasonable and exactly what you meant to do.
So, use the Leaks instrument to find bugs in your code that will ruin your app. Don't worry about every byte found 'Leaking' in an Apple framework.
If it's a one off 128 byte leak then don't worry about it at all, there are better ways to spend your time than thinking about this :)
My app crashes after about 20 minutes with status 101 (Out of Memory, I believe)
Debugging using Instruments - ObjectAlloc and Leaks gives me no clues. The ObjectAlloc graph stays at a nice constant level of around 1 million bytes (1MB), as does the Net # of allocations. I have got rid of all leaks.
I thought it could be something to do with number of threads, but graphing these in ObjectAlloc also shows them to be constant.
Can anyone point me in the direction of another tool, or another avenue of investigation?
Fix everything Clang finds. LLVM Clang Static Analysis
Remember that objects allocated by the system (and that includes things like images and sounds) don't get tracked in Instruments (although the top level retain counts do, of course). So it's feasable that you're loading images, say, which won't contribute much to your memory usage as show, but can drain a lot of actual memory!
If none of this strikes any chords, you could try the subtractive debugging approach - (take a copy of your project) cut out chunks of functionality until the problem goes away or you get the smallest possible thing that reproduces it. That should at least help you to find where the bottleneck is. Admittedly this will be hard (a) because you'll have to wait 20 minutes or so every time you test (but if you make this a background procedure it's not so bad) and (b) because the nature of memory problems is that there may not be one single cause, but a critical mass of smaller causes.
Good luck!
My experiences with Object Alloc have not been that great. It does not always give you the actual memory used by your application.
Instead, use Object Alloc with Activity Monitor. Make sure you use the "Physical Memory Free" and "Physical Memory used" options in the activity monitor. That will tell you exactly how much memory your application is using.
What do you mean by "nice level". It does not rise over time, at all? How much memory total - it could just be the phone needs some memory for some other app and yours is a little too big to stay up.
The error code 101 means that iPhone OS force quit your app. If you're using UIImageViews in your application, be sure to manage the memory on them. I've found that once my application goes over 10/12 MB, the iPhone terminates it.
If you're not using any image views (or large images), then your backend code is eating up too much space.
All I can say is you need to look at your allocation more carefully and manage what views you keep in memory at any one time.
Run your application in Instruments (Run -> Start with Performamce Tool -> Leaks) to see where your memory is getting allocated.
Hope this helps!
I have an iPhone app that is running great in the simulator. It responds well to the memory warnings by getting rid of everything that is not absolutely essential. When I run it on the device, it runs well. But after a certain amount of usage it crashes with error code 101 - which, from what I can tell, is the OS killing it due to memory usage. I can see the memory warning (I'm logging it), and my app responds to it, but dies shortly thereafter.
If I look at the app in Instruments (either on the device or in sim), it doesn't find any leaks. In addition, the net memory usage is in the range of 600-700k bytes. Transitioning from the different views of my app increases memory usage (as expected), but when the views and controllers are released and dealloc'd, the memory usage never quite goes as low as it was. However, the addition is usually only something in the range of 1000-2000 bytes. So while Leaks shows me no leaks, I suspect there is an issue somewhere. I've also looked at all of the objects I'm allocating, and all of them seem to be reclaimed as expected. The only objects I see that keep increasing are GeneralBlock-N (where N is some number)
Should I not pay any attention to Instruments net usage figure? What would be the next steps in trying to diagnose the issue?
ADDED: I'm not making any calls to malloc() or any CoreFoundation libraries that would return a buffer that I'm responsible for. The only non-Obj-C calls I'm making are logging statements to NSLog.
One quick thing to try is running the Clang static analyzer. This will find some, but not all, issues in your code that you might be missing. It checks the code at compile time, so it's by no means infallible, but will almost certainly find most glaring problems.
You should also run your application with the memory monitor instruments to see overall system usage on the device.
Leaks only finds memory that is not referenced by anything, but still retained.
What you are seeing is that you have left memory retained, and still referenced by something.
One thing to look for especially, is that if you have passed a reference of a class to something else as a delegate that you free it in your dealloc method.
Similarly, if you have subscribed to any notifications you should unsubscribe in viewWillDisappear: (if you use the general unsubscription method in a view controller do not forget to re-subscribe to the memory warning notification.
Timers are the same way, deactivate them when a view goes away and re-enable them when the view comes back (unless of course you need a timer running the whole time your application is running).
Basically be suspicious of anything you give a reference of a class to, and try to figure out how you might eliminate that link whenever possible (either in dealloc or viewWillDisappear: or both).
Here's a summary of what I've learned (thanks to some excellent answers and comments):
Object Allocation is NOT the same as Memory usage. The answer to my question about ObjectAlloc's net bytes element is that you shouldn't be paying attention to it - at least not when determining issues with the amount of memory you are using or whats causing it to crash. It doesn't reflect the true memory usage of your application.
My amatuerish guess is that ObjectAlloc only shows you the memory taken up by the direct object itself. So if you have an UIImageView, it takes up just a handful of bytes to store the various properties, but it might be pointing to an image in memory taking up a bunch of space. Therefore, looking at ObjectAlloc is helpful only in making sure you're not creating and keeping objects around, it won't give you an idea of how much memory you're using or how much you can use before crashing.
MemoryMonitor will give you the total memory usage. You can constrain it to viewing only your app's usage by using the search tool in the bottom right of the Instruments window.
Both ObjectAlloc and Memory Monitor (as well as the Leaks tool) are plugins for Instruments - just in case thats not obvious to someone else. You can launch Instruments from within XCode by doing Run -> Start with Performance Tool. Once inside of Instruments, you can open the Library and add new plugins to monitor different aspects of performance.
One thing to look for is circular references.
(I don't want this to sound patronising - just want to make sure I'm being clear:) If object a refers to object b and object b refers to object a, there may not be a reported "leak" because all the memory is still referenced - but this may be an orphaned island of objects, seperated from your app and never reclaimable. Of course it may involve more objects ( a refers to b, b refers to c, c refers to a, etc).
If you're building up a graph of objects somewhere, and there are any back or cross references, be sure to break the circles if you release the root (there are different ways of doing this. The simplest is probably to make sure each class in question has a releaseAll method, or similar - which calls releaseAll on it's child objects, then releases the child objects - but this isn't always the best solution).