tformfwd and tforminv - what's the difference? - matlab

Suppose I have an arbitrary transformation matrix A such as,
A =
0.9966 0.0007 -6.5625
0.0027 0.9938 1.0598
0 0 1.0000
And a set of points such that their x and y coordinates are represented by X and Y respectively.
And suppose,
[Xf Yf] = tformfwd(maketform('projective',A),X,Y);
Now,
[Xff Yff] = tformfwd(maketform('projective',inv(A)),Xf,Yf);
[Xfi Yfi] = tforminv(maketform('projective',A),Xf,Yf);
[Xff Yff] and [Xfi Yfi] seem to be exactly the same (and they should).
Is tforminv just there for convenience or am I missing something here?

I'll preface this by saying it is my best guess...
It's possible that tforminv may perform the transformation without actually forming the inverse matrix. For example, you can solve a system of linear equations Ax = b in two ways:
x = inv(A)*b;
x = A\b;
According to the documentation for inv, the second option (using the matrix division operator) can perform better "from both an execution time and numerical accuracy standpoint" since it "produces the solution using Gaussian elimination, without forming the inverse". tforminv may do something similar and thus show better overall behavior compared with passing the inverse matrix to tformfwd.
If you were so inclined, you could probably try a number of different transformation matrices and test the two approaches (tforminv or tformfwd and inv) to see how accurate the results are and how fast they are each computed.

Related

Find roots of characteristic equation of a matrix function in MATLAB

I have a matrix that is a function of some parameter A=A(x). I would like to find the points x where this matrix becomes singular. Example (I have a large matrix though):
syms x
A=[x sin(x); cos(x^2) 2.5];
So far I have been symbolically computing the determinant of the matrix and then used fzero or newtzero to find the roots of that characteristic equation. I.e.
detA = det(A);
fzero(matlabFunction(detA),startingGuess)
Then I found this: How to find out if a matrix is singular?, where it is advocated to not use the determinant under any circumstances.
Indeed the symbolic determinant calculation is terribly slow. However I tried to use rank(A) instead as suggested in the link and it does not seem to work for symbolic matrices.
Is there any way to implement the suggestions in the link for finding the roots of a characteristic equation of a matrix that is given symbolically?
A possible approach would be the following: a square matrix A is singular if and only if the homogeneous linear (with respect to the vector y) system A*y = 0 has nontrivial solutions y <> 0 (which is equivalent to det(A) = 0 and rank(A) = 0 among others. So a more or less standard, as I recall from the past, technique to compute such points x is to solve the nonlinear system
A(x)*y = 0 (1)
||y|| = 1 (2)
This way you can compute a point x* and a vector y* such that A(x*) is singular and y* is an eigenvector corresponding to the zero eigenvalue of A(x*).
If I remember correctly, you can also solve the somewhat easier system
A(x)*y = 0 (1)
<y,c> = 1 (2a)
where c is "almost" any nonzero random vector (normalize it to 1 to avoid numerical problems).
As a matter of fact there is an enormous bibliography on the subject - you can look for saddle-node bifurcation computations (in case A(x) is the Jacobian of a vector field), or for "distance to instability".
From a discussion with Ander Biguri it seems that the determinant is actually a perfectly fine method of approaching this problem. The problem seems to be to solve the final equation in a stable manner, which would be a different question.

Matlab: Numerical imprecision for the inverse of a matrix [duplicate]

When I try to calculate a matrix inverse using Matlab's inv() operation:
A = rand(10,10);
b = rand(10,1);
C = inv(A);
D = C*b;
I get the following warning at the last row: INV is slow and inaccurate. Use A\b for INV(A)*b , and b/A for b*INV(A).
I can change the code above into:
A = rand(10,10);
b = rand(10,1);
C = inv(A);
D = A\b;
Now I don't get the warning, but I don't think this solution is better.
Note: I need to store both the inverse of matrix A as well as inv(A)*c. Also, in my real file the size of matrix A can be 5000 x 5000 or even bigger.
Are there any better solutions in terms of efficiency and accuracy or is the first method fine?
You should listen to Matlab and use the second option. inv(A)*b and A\b are computed with different algorithms under the hood, and \ is indeed more accurate.
The documentation for inv states:
In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv arises when solving the system of linear equations Ax = b. One way to solve this is with x = inv(A)*b. A better way, from both an execution time and numerical accuracy standpoint, is to use the matrix division operator x = A\b. This produces the solution using Gaussian elimination, without forming the inverse. See mldivide () for further information.
Some additional information:
If you are to calculate
Ax = b
For many different b's, but with a constant A, you might want to pre-factorize A. That is:
[L U P] = lu(A);
x = (U \ (L \ ( P * b)));
Don't know about other fields, but this occurs frequently in power system engineering at least.
If you absolutely need the inverse later on, then you have to compute it. If you can use the backslash operator (\) instead of an inverse again later on, I would stay away from the inverse and listen to MATLAB's suggestion. For numerical reasons, it is always better to use a slash operator when you can, so the second approach is better even though it is slower.

Duplicating a 2d matrix in matlab along a 3rd axis MANY times

I'm looking to duplication a 784x784 matrix in matlab along a 3rd axis. The following code seems to work:
mat = reshape(repmat(mat, 1,10000),784,784,10000);
Unfortunately, it takes so long to run it's worthless (changing the 10,000s to 1000 makes it take a few minutes, and using 10,000 makes my whole machine freeze up practically). is there a faster way to do this?
For reference, I'm looking to use mvnpdf on 10,000 vectors each of length 784, using the same covariance matrix for each. So my final call looks like
mvnpdf(X,mu,mat)
%size(X) = (10000,784), size(mu) = (10000,784), size(mat) = 784,784,10000
If there's a way to do this that's not repeating the covariance matrix 10,000 times, that'd be helpful too. Thanks!
For replication in more than 2 dimensions, you need to supply the replication counts as an array:
out = repmat(mat,[1,1,10000])
Creating a 784x784 matrix 10,000 times isn't going to take advantage of the vectorization in MATLAB, which is going to be more useful for small arrays. Avoiding a for loop also won't help too much, given the following:
The main speedup you can gain here is by computing the inverse of the covariance matrix once, and then computing the pdf yourself. The inverse of sigma takes O(n^3), and you are needlessly doing that 10,000 times. (Also, the square root determinant can be precomputed.) For reference, the PDF of the multivariate normal distribution is computed as follows:
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Properties
Better to just compute the inverse once, and then compute z = x - mu for each value, then doing z'Sz for each pdf value, and applying a simple function and a constant. But wait! You can vectorize that, too.
I don't have MATLAB in front of me, but this is basically what you need to do, and it'll run in an instant.
s = inv(sigma);
c = -0.5*log(det(s)) - (k/2)*log(2*pi);
z = x - mu; % 10000 x 784 matrix
ans = exp( c - 0.5 .* dot(z*s, z, 2) ); % 10000 x 1 vector

det of a matrix returns 0 in matlab

I have been give a very large matrix (I cannot change the values of the matrix) and I need to calculate the inverse of a (covariance) matrix.
Sometimes I get the error saying
Matrix is close to singular or badly scaled.
Results may be inaccurate
In these situations I see that the value of the det returns 0.
Before calculating inverse (of a covariance matrix) I want to check the value of the det and perform something like this
covarianceFea=cov(fea_class);
covdet=det(covarianceFea);
if(covdet ==0)
covdet=covdet+.00001;
%calculate the covariance using this new det
end
Is there any way to use the new det and then use this to calculate the inverse of the covariance matrix?
Sigh. Computation of the determinant to determine singularity is a ridiculous thing to do, utterly so. Especially so for a large matrix. Sorry, but it is. Why? Yes, some books tell you to do it. Maybe even your instructor.
Analytical singularity is one thing. But how about numerical determination of singularity? Unless you are using a symbolic tool, MATLAB uses floating point arithmetic. This means it stores numbers as floating point, double precision values. Those numbers cannot be smaller in magnitude than
>> realmin
ans =
2.2251e-308
(Actually, MATLAB goes a bit lower than that, in terms of denormalized numbers, which can go down to approximately 1e-323.) See that when I try to store a number smaller than that, MATLAB thinks it is zero.
>> A = 1e-323
A =
9.8813e-324
>> A = 1e-324
A =
0
What happens with a large matrix? For example, is this matrix singular:
M = eye(1000);
Since M is an identity matrix, it is fairly clearly non-singular. In fact, det does suggest that it is non-singular.
>> det(M)
ans =
1
But, multiply it by some constant. Does that make it non-singular? NO!!!!!!!!!!!!!!!!!!!!!!!! Of course not. But try it anyway.
>> det(M*0.1)
ans =
0
Hmm. Thats is odd. MATLAB tells me the determinant is zero. But we know that the determinant is 1e-1000. Oh, yes. Gosh, 1e-1000 is smaller, by a considerable amount than the smallest number that I just showed you that MATLAB can store as a double. So the determinant underflows, even though it is obviously non-zero. Is the matrix singular? Of course not. But does the use of det fail here? Of course it will, and this is completely expected.
Instead, use a good tool for the determination of singularity. Use a tool like cond, or rank. For example, can we fool rank?
>> rank(M)
ans =
1000
>> rank(M*.1)
ans =
1000
See that rank knows this is a full rank matrix, regardless of whether we scale it or not. The same is true of cond, computing the condition number of M.
>> cond(M)
ans =
1
>> cond(M*.1)
ans =
1
Welcome to the world of floating point arithmetic. And oh, by the way, forget about det as a tool for almost any computation using floating point arithmetic. It is a poor choice almost always.
Woodchips has given you a very good explanation for why you shouldn't use the determinant. This seems to be a common misconception and your question is very related to another question on inverting matrices: Is there a fast way to invert a matrix in Matlab?, where the OP decided that because the determinant of his matrix was 1, it was definitely invertible! Here's a snippet from my answer
Rather than det(A)=1, it is the condition number of your matrix that dictates how accurate or stable the inverse will be. Note that det(A)=∏i=1:n λi. So just setting λ1=M, λn=1/M and λi≠1,n=1 will give you det(A)=1. However, as M → ∞, cond(A) = M2 → ∞ and λn → 0, meaning your matrix is approaching singularity and there will be large numerical errors in computing the inverse.
You can test this in MATLAB with the following simple example:
A = eye(10);
A([1 2]) = [1e15 1e-15];
%# calculate determinant
det(A)
ans =
1
%# calculate condition number
cond(A)
ans =
1.0000e+30
In such a scenario, calculating an inverse is not a very good idea. If you just have to do it, I would suggest using this to increase display precision:
format long;
Other suggestion could be to try using an SVD of the matrix and tinker around with singular values there.
A = U∑V'
inv(A) = V*inv(∑)*U'
∑ is a diagonal matrix where you will see one of the diagonal entries close to 0. Try playing around with this number if you want some sort of an approximation.

Determinants of huge matrices in MATLAB

from a simulation problem, I want to calculate complex square matrices on the order of 1000x1000 in MATLAB. Since the values refer to those of Bessel functions, the matrices are not at all sparse.
Since I am interested in the change of the determinant with respect to some parameter (the energy of a searched eigenfunction in my case), I overcome the problem at the moment by first searching a rescaling factor for the studied range and then calculate the determinants,
result(k) = det(pre_factor*Matrix{k});
Now this is a very awkward solution and only works for matrix dimensions of, say, maximum 500x500.
Does anybody know a nice solution to the problem? Interfacing to Mathematica might work in principle but I have my doubts concerning feasibility.
Thank you in advance
Robert
Edit: I did not find a convient solution to the calculation problem since this would require changing to a higher precision. Instead, I used that
ln det M = trace ln M
which is, when I derive it with respect to k
A = trace(inv(M(k))*dM/dk)
So I at least had the change of the logarithm of the determinant with respect to k. From the physical background of the problem I could derive constraints on A which in the end gave me a workaround valid for my problem. Unfortunately I do not know if such a workaround could be generalized.
You should realize that when you multiply a matrix by a constant k, then you scale the determinant of the matrix by k^n, where n is the dimension of the matrix. So for n = 1000, and k = 2, you scale the determinant by
>> 2^1000
ans =
1.07150860718627e+301
This is of course a huge number, so you might expect that it should fail, since in double precision, MATLAB will only represent floating point numbers as large as realmax.
>> realmax
ans =
1.79769313486232e+308
There is no need to do all the work of recomputing that determinant, not that computing the determinant of a huge matrix like that is a terribly well-posed problem anyway.
If speed is not a concern, you may want to use det(e^A) = e^(tr A) and take as A some scaling constant times your matrix (so that A - I has spectral radius less than one).
EDIT: In MatLab, the log of a matrix (logm) is calculated via trigonalization. So it is better for you to compute the eigenvalues of your matrix and multiply them (or better, add their logarithm). You did not specify whether your matrix was symmetric or not: if it is, finding eigenvalues are easier than if it is not.
You said the current value of the determinant is about 10^-300.
Are you trying to get the determinant at a certain value, say 1? If so, rescaling is awkward: the matrix you are considering is ill-conditioned, and, considering the precision of the machine, you should consider the output determinant to be zero. It is impossible to get a reliable inverse in other words.
I would suggest to modify the columns or lines of the matrix rather than rescale it.
I used R to make a small test with a random matrix (random normal values), it seems the determinant should be clearly non-zero.
> n=100
> M=matrix(rnorm(n**2),n,n)
> det(M)
[1] -1.977380e+77
> kappa(M)
[1] 2318.188
This is not strictly a matlab solution, but you might want to consider using Mahout. It's specifically designed for large-scale linear algebra. (1000x1000 is no problem for the scales it's used to.)
You would call into java to pass data to/from Mahout.