Creating small setups to deploy dll? - deployment

I've been using Inno Setup for deploying and registering a dll, but all the setups generated with InnoSetup have a min size of 500kb while my dll is only like 40kb.
I don't want to use a packer such as UPX because I don't like the way they work.
Is there another free app to create smaller setups for deploying dlls?

Try Nullsoft Installer. Its list of features claims to create only 34KB overhead.
You can also write some WiX scripts to minimize the features included in your installer and bring down its size, while still using the MSI engine. (As a side note, you can also use the ClickThrough to have your dll automatically update)

Related

How can I make Service Fabric package sizes practical?

I'm working on a Service Fabric application that is deployed to Azure. It currently consists of only 5 stateless services. The zipped archive weighs in at ~200MB, which is already becoming problematic.
By inspecting the contents of the archive, I can see the primary problem is that many files are required by all services. An exact duplicate of those files is therefore present in each service's folder. However, the zip compression format does not do anything clever with respect to duplicate files within the archive.
As an experiment, I wrote a little script to find all duplicate files in the deployment and delete all but one of each files. Then I tried zipping the results and it comes in at a much more practical 38MB.
I also noticed that system libraries are bundled, including:
System.Private.CoreLib.dll (12MB)
System.Private.Xml.dll (8MB)
coreclr.dll (5MB)
These are all big files, so I'd be interested to know if there was a way for me to only bundle them once. I've tried removing them altogether but then Service Fabric fails to start the application.
Can anyone offer any advice as to how I can drastically reduce my deployment package size?
NOTE: I've already read the docs on compressing packages, but I am very confused as to why their compression method would help. Indeed, I tried it and it didn't. All they do is zip each subfolder inside the primary zip, but there is no de-duplication of files involved.
There is a way to reduce the size of the package but I would say it isn't a good way or the way things should be done but still I think it can be of use in some cases.
Please note: This approach requires target machines to have all prerequisites installed (including .NET Core Runtime etc.)
When building .NET Core app there are two deployment models: self-contained and framework-dependent.
In the self-contained mode all required framework binaries are published with the application binaries while in the framework-dependent only application binaries are published.
By default if the project has runtime specified: <RuntimeIdentifier>win7-x64</RuntimeIdentifier> in .csproj then publish operation is self-contained - that is why all of your services do copy all the things.
In order to turn this off you can simply add SelfContained=false property to every service project you have.
Here is an example of new .NET Core stateless service project:
<PropertyGroup>
<TargetFramework>netcoreapp2.2</TargetFramework>
<AspNetCoreHostingModel>InProcess</AspNetCoreHostingModel>
<IsServiceFabricServiceProject>True</IsServiceFabricServiceProject>
<ServerGarbageCollection>True</ServerGarbageCollection>
<RuntimeIdentifier>win7-x64</RuntimeIdentifier>
<TargetLatestRuntimePatch>False</TargetLatestRuntimePatch>
<SelfContained>false</SelfContained>
</PropertyGroup>
I did a small test and created new Service Fabric application with five services. The uncompressed package size in Debug was around ~500 MB. After I have modified all the projects the package size dropped to ~30MB.
The application deployed worked well on the Local Cluster so it demonstrates that this concept is a working way to reduce package size.
In the end I will highlight the warning one more time:
Please note: This approach requires target machines to have all prerequisites installed (including .NET Core Runtime etc.)
You usually don't want to know which node runs which service and you want to deploy service versions independently of each other, so sharing binaries between otherwise independent services creates a very unnatural run-time dependency. I'd advise against that, except for platform binaries like AspNet and DotNet of course.
However, did you read about creating differential packages? https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-application-upgrade-advanced#upgrade-with-a-diff-package that would reduce the size of upgrade packages after the initial 200MB hit.
Here's another option:
https://devblogs.microsoft.com/dotnet/app-trimming-in-net-5/
<SelfContained>True</SelfContained>
<PublishTrimmed>True</PublishTrimmed>
From a quick test just now, trimming one app reduced the package size from ~110m MB to ~70MB (compared to ~25MB for selfcontained=false).
The trimming process took several minutes for a single application though, and the project I work on has 10-20 apps per Service Fabric project. Also I suspect that this process isn't safe when you have a heavy reliance on dependency injection model in your code.
For debug builds we use SelfContained=False though because developers will have the required runtimes on their machines. Not for release deployments though.
As a final note, since the OP mentioned file upload being a particular bottleneck:
A large proportion of the deployment time is just zipping and uploading the package
I noticed recently that we were using the deprecated Publish Build Artifacts task when uploading artifacts during our build pipeline. It was taking 20 minutes to upload 2GB of files. I switched over the suggested Publish Pipeline Artifact task and it took our publish step down to 10-20 seconds. From what I can tell, it's using all kinds of tricks under the hood for this newer task to speed up uploads (and downloads) including file deduplication. I suspect that zipping up build artifacts yourself at that point would actually hurt your upload times.

How to install TDS generated .update packages in Sitecore 7.2?

In setting up Sitecore 7.2 at my organization for our public facing .com I have run into a hiccup while trying to implement proper CI, Release Management, and Deployment Management. I am able to, using MSBuild, compile my Sitecore MVC code, compile .update packages from TDS, and package each of these in .nupkg files for Octopus Deploy. What I am running in to is that once I have deployed the MVC code I must also deploy the Sitecore Structure/Content which requires me to install .update packages. I have tried the solution provided at https://github.com/adoprog/Sitecore-Deployment-Helpers but for a fairly lightweight site this is timing out around 20 minutes within Octopus Deploy for only my System package, let alone having not touched Structure or Content. I am looking for a way, preferably through PowerShell (not strictly speaking, the Sitecore PowerShell Extensions built into the sitecore web interface after installing that package). Using the SPE would be acceptable if, and only if, I can use SPE's Cmdlets from Octopus Deploy's PowerShell workflow.
Please Advise.
Jason Bert has a great series of blogs on using Octopus Deploy with TeamCity and TDS for deploying to Sitecore instances:
http://www.jasonbert.com/2013/11/03/continuous-integration-deployment-with-sitecore/
You can also use TDS itself to deploy the items in the solution, but this uses direct calls to a webservice on the target Sitecore instance which may not meet with your requirements.
Also, are you deploying the entire System tree? 20 minutes to deploy changes made to the System tree seems unusual, unless you've made a LOT of changes in there (for example, the Dictionary). Even then, you shouldn't be source-controlling author content, only the elements crucial to the solution that are owned by development.
You can install the update package via sitecore utility at /sitecore/admin/UpdateInstallationWizard.aspx
If you experience that installing the package via this mode takes a lot of time, you might want to modify the Deployment Property Manager settings for the TDS project.
You can do this by right clicking your TDS project in Visual Studio and selecting "Deployment Property Manager".
Once the Deployment Property Manager window opens up, set the Deploy property to Once for every node which does not need to be updated. For any items which are to be updated, mark them as Always.
This will drastically save you on the time required to install the package.

What is the benefit and real purpose of program installation?

Of all the programs I wrote so far, If I want it to work on another work station, I just have to copy and paste the executable and necessary files needed to make it run (e.g: .o files, binary files..).
But all the program built for commercial use always comes with an installer. For example PC games. So my question is: What is the main benefits/reasons of doing installation when we could just simply copy the files over to the targetted work station?
-One of the reason is probably to prevent piracy. But other than that, I'm sure there are other stronger reasons?
The Complexity of Deployment
Only the simplest applications can work with a simple file copy, and even then you need to have a convenient way to actually download and do the copying of the files to the right location - and this is what a setup is for. The setup is also a marketing tool that can be used for branding and consistency across products as well as allowing installation of a trial version of the product - a very important part of selling software.
Finally a setup provides upgrade and patching features for new versions as well as uninstall and cleanup of the system when the user wants to remove your software. A good setup may also be signed with digital certificates to ensure the file can not be hampered with in transit, and that the vendor is certifiable and hence serious. All of these things are crucial for a serious product.
It is important to remember that the setup experience is the users first encounter with the quality of your product. If the setup fails the product can't be evaluated at all. This would seem to be the most expensive error to make in software development.
Errors in deployment are cumulative in the sense that once you have a deployed error, you generally have no access to the machine in question for debugging - and the fix could easily do more damage. You are managing a delivery process, not just debugging code and binaries. Each delivery adds risk and complexity and pretty soon you can have an impossibility to maintain on your hands if you are not careful. Furthermore all machines your setup is run on will almost certainly be in a totally different state than another computer.
Deployment (setups) is therefore the complex process of migrating any computer from one stable state to another. This requires a disciplined approach. The setup should install all required files and settings and ensure the product is configured for first launch or ready to be configured upon launch without failure. This can be a very complex task. The list of things a setup may need to do is growing all the time, and for every new versions of Windows it seems new obstacles are put in place to make deployment harder. Such obstacles include the UAC prompts, self-repair lockdown on terminal servers, changed core MSI caching behavior, new folder redirects, virtualization features, new and changed signing features with encryption and digital certificates, Active X killbits security lockdown, 64 bit complexities, etc... The list goes on.
Application virtualization is a big issue these days. It essentially encapsulates computer programs from the underlying operating system on which it is executed. This essentially still involves a deployment package for your application, but a fully virtualized application is not installed in the traditional sense. The application behaves at runtime like it is directly interfacing with the original operating system and all the resources managed by it, but can be isolated or sandboxed to varying degrees.
An Overview of Deployment Tasks
The tasks and features needed in a setup range from the very fundamental and basic with built-in Windows Installer or third party tool support, to the highly customized ad hoc solutions where you have to actually code something yourself to deal with unique deployment requirements.
Deployment tools really contain most you would ever need for any deployment, but certain things are still coded on a case by case basis. These ad hoc solutions are implemented as "custom actions" in Windows Installer, and they are without a shadow of a doubt the leading cause of deployment failures. See the "Very Advanced" section for more on custom actions.
Overuse of custom actions and a lot of ad hoc coding tends to indicate flawed application design, but in certain cases you are just dealing with new technology and you have to roll your own solution to get your solution deployed. This is exactly what custom actions are for. Over time standardized solutions should be created and preferred. And small changes in application design can often eliminate complicated custom actions. This is a very important fact about software deployment - there are so many variables that one should opt for simplicity whenever possible.
At a basic overview level, deployment must account for:
Setup Fundamentals
All third party tools provide good support for these setup fundamentals, but there are some differences. The installation of prerequisites may be the area where third party tools and free frameworks like WiX differ the most in terms of ease of use - at the time of writing. The support is there, but it can be a little bit challenging to set up.
Check if the system is suitable for installation for the package in question.
Disk space.
OS type & version.
Language version.
Computer architecture x86/x64.
Unsuitable platforms: Thin Client / Citrix / Terminal Services
Customized setup required due to custom lockdown.
Maybe even malware situation (I wish - can cause mysterious deployment problems).
etc...
Scan for presence and if necessary install prerequisites and runtimes.
Allowing easy deployment of prerequisites and runtimes is a task with extensive support in third party deployment tools. There is limited support for this in Windows Installer itself. The basic feature for runtime distribution in Windows Installer is the merge module - essentially the "include file equivalent" for MSI files. The standard way to deploy shared files. A merge module is compiled into your MSI at build time - sort of early binding in developer terms.
Some prerequisites are installed via Windows Installer merge modules. Others are generally installed using their own setup file (various formats).
Examples: Active X for games, Crystal Reports, Microsoft Report Viewer Runtime, MySQL, SQL Server Runtime, VB6 Runtime, ASP.NET MVC Runtime, Java Runtime, Silverlight, Microsoft XNA, VC++ Runtime, .NET runtime versions, Visual Studio Tools For Office Runtime, Visual F# Runtime, MSXML Runtime, MS Access Runtime, Apache Tomcat, Various Primary Interop Assemblies, PowerShell versions, etc...
Finally, several core Microsoft components such as Windows Installer versions and PowerShell versions generally come down via Windows Update and might be better to exclude from your setup (just check for existence, and tell user to run Windows Update if component is missing). Actual practice here varies.
Provide a GUI suitable for input of required settings from the user.
It is common practice to enter and validate license keys in a setup.
Personally I think this is better done from the application itself for both practical and security reasons - making piracy more difficult, allowing trial installs, reducing excessive setup support calls (you wouldn't believe it...), etc...
For complex setups a lot of GUI could be required to gather deployment settings - particularly for server setups with IIS, MS SQL, COM+ and other advanced components.
Allow installation in silent mode for corporate use.
Extremely important - all corporate deployment is automatic and silent (no GUI shown during installation), except certain server installs.
Smaller companies may run your setup in GUI mode. In my experience they generally do.
Home users generally always run your setup in GUI mode.
Know your target group, and definitely make sure you support silent running if you target corporate customers. However all setups should work in silent mode, and if you follow MSI design rules and best practice it "comes for free".
Adding Basic Stuff
These basic tasks have full support in the Windows Installer engine itself, and all third party tools provide fairly equivalent support for all of them despite variations in GUI features and ease of use.
Install files and registry settings.
Install odbc, file associations, shortcuts and icons.
Update application and system-wide path settings.
Update and merge text based files such as INI files.
Register COM files and enable .NET COM Interop if need be.
Install .NET assemblies to the GAC, and run custom .NET installer classes.
Install side-by-side windows assemblies to WinSxS.
Deliver signed and certified files (also applies to the setup file itself).
Install and control Windows services.
Install Control Panel Applets.
Update environment variables.
I won't dwell on these issues or flesh them out with too many details. All of these deployment tasks should be reasonably well supported in all deployment tools and frameworks available. However, many people mess up their deployment by not using the built-in deployment features and instead relying on custom actions for such trivial tasks. Entirely added risk for no gain whatsoever.
In particular we often see custom actions used to install Windows services - and this is usually a sign of a very badly designed service, or at other times just ignorance of how to do deployment. Both issues together is also common. Deploying such a service often involves applying custom ACL permissioning and modified NT privileges to make a service run with user rights instead of as LocalSystem - which is generally the only correct way to run Windows services. Running a service with user credentials is a "deployment anti-pattern" worth mentioning in passing (more on this later).
Another common custom action use that is always wrong is to install files to the GAC via a custom action. There is good built-in support for this in Windows Installer and any excuses to install via a custom action is almost certainly hiding a bad design or some generalized madness :-). It is also a fact that many deploy far too many things to the GAC overall, but that is a development issue: When should I deploy my assemblies into the GAC?
Finally, .NET installer classes are intended for developers to test their components during development - it should not be used for deployment. It is essentially just the .NET equivalent of self-registration (which is also not acceptable for MSI - you need to extract the COM information and add to the MSI tables - see link for details). An MSI is declarative - it should contain all changes to be applied to the system so that proper rollback and management can be ensured. So the message is that .NET installer classes should only be used for development and testing. Once you build an MSI to deploy your application you should use MSI constructs to achieve proper deployment with rollback support and intelligent management. We see these .NET installer classes used mostly for service and GAC install. In an MSI this translates to using the ServiceInstall and ServiceControl tables for services, and just marking a component for GAC install to install to the GAC (must be a signed assembly). Once you know how, it is easy and you won't miss the .NET installer classes because MSI works like "automagic" when you do this right. You get reliable rollback for free, with ease.
Adding Advanced Stuff (often server stuff)
Despite support in all deployment tools for most of these issues, I have often found that I needed to implement custom actions and ad hoc solutions to achieve proper deployment in certain cases. This is particularly the case for COM+ and IIS deployment. WiX provides highly customized support for both types of deployment, but I have limited experience using it.
The update and installation of XML files is a task supported by each deployment tool since there is no built-in support for this in the Windows Installer engine - which is quite amazing at this point.
With regards to database installation and particularly updates, I am on the fence thinking it should be done from applications with proper user authentication and interactive use, instead of a "one shot" and impersonated deployment operation (that might fail seemingly without good exception management or recovery options). Or in other cases it seems updates should be a managed process involving users raising corporate tickets handled by professional DBOs. Some more details below.
Configuration of IIS, Apache, or other web servers.
This is a whole world of its own, particularly with regards to IIS. I have found deployment tools lacking in features to deploy sites as requested by developers and corporate teams.
Though largely untested by me, the WiX framework provides a very flexible implementation of IIS configuration and deployment.
I expect a lot of custom actions are in use to achieve special deployment configurations.
Run SQL server scripts against databases.
Create db, connect to db, update db, run stored procedures, maybe even trigger backups or schedule new tasks, etc... I don't know all that people do here.
Should this be done in the application instead, or by a DBO? That seems much more reliable. A setup is "one shot", an application can be restarted and you try again - a better exception handling.
Plus an MSI setup has a highly limited GUI severely limited in events due to the overall MSI design (proper Win32 dialogs can be spawned from the limited MSI GUI, but it takes a lot of effort - I have only done it once).
Crucially a setup can run with elevated rights, but that is just on the local machine. Authentication is still needed against the database (unless Windows Authentication is used).
A database update is a transaction on its own that would run as a part of the overall Windows Installer transaction. It is not obvious how to handle errors or what to do in terms of rollback if the installation fails.
Needless to say this can all get very complex to handle in your setup. It is an (enterprise) configuration task in my view, not just a deployment task. Insightful comments very welcome on this issue - I am on the fence with regards to best practice.
If you are delivering a client / server solution to your customers and need a way to set up the (server side?) databases "fresh" with defaults to help your customers "get going" with your solution, then database deployment definitely makes sense to me. But update scripts run as part of installation targeting existing databases would worry me in terms of reliability and management - not to mention safety.
For corporate database updates it would seem a proper process involving a DBO would be more secure. They can run a proper backup before updates are applied and then true rollback is in place if problems are found in UAT.
Installing ActiveX browser components (certificate based through browser).
Install of signed CAB file downloaded from a Web page (admin only, can be captured as an MSI for mass deployment with elevated rights).
Defaults to install in "C:\Windows\Downloaded Installations".
Complications can arise if the version in the CAB file differs from the version requested by the Web page (triggers CONFLICT folders to be generated as installs keep re-running).
Update and merge XML files.
Advanced because it is (amazingly) not natively supported by Windows Installer.
Supported with extensions by both WiX and third party deployment tools.
Configure and control COM+ components.
Tech note: I have failed several times to achieve this properly with several third party tools. There seems to be an overall lack of required features.
I normally end up manually configuring the COM+ application and then exporting an MSI from the Component Services administrative tool that is then used for deployment.
This exported MSI is not good at all - fragile if you try to make any modifications. It contains an undocumented .apl file with the application's attributes and any dependent DLL or data files are not auto-included.
WiX provides support for COM+ (not tested at all by me). I hope it is good :-).
Just for reference: Understanding COM+ Application Installation.
Add custom event logs, set up performance monitors, add firewall rules, and other windows extensions. Supported by most deployment tools these days - including WiX. These features are not natively supported by the Windows Installer engine.
Set up connections to mobile devices and deploy.
Can involve "some strangeness" and weird proprietary solutions.
A custom, native dll might be required to achieve smooth deployment (Pocket PC back in the day - not sure how things work these days).
Install drivers of various kinds.
Much easier and more reliable now for signed drivers than before.
Supported by all third party tools and WiX (using dpinst.exe in the background).
Hooking up the application to advanced server features (deployed separately).
Automatic update systems.
License servers. Floating licenses, or regular licenses.
Online resources of various types. Help, templates, discussions, SDKs, developer tools, etc...
Online stores.
Most of the time this just involves setting a link or registry key to point to the server resources, but sometimes it is more complex.
Adding Very Advanced Stuff (custom actions)
When there is no built-in support for a certain operation or task in Windows Installer itself, or in any of the various third party tools available, you are left having to implement the feature yourself.
When you use Windows Installer, this involves running custom actions of various types (Windows Installer's mechanism for running executable, custom installation logic during installation).
Custom actions are purpose built executables (binaries: dll, exe) and scripts capable of making advanced modifications to the system during installation that are not supported by Windows installer natively or by the deployment tool in use (WiX, Installshield, Advanced Installer, etc...).
Custom actions that make modifications to the system run with elevated rights so that changes can be made to the system even if the logged on user does not have admin rights. There is essentially no limit to what these custom actions can do. They are armed and dangerous.
Custom actions are the leading causes of deployment errors and failure.
Hands down. If an MSI install fails it is most often related to a failing custom action.
Custom actions are difficult to write and debug due to the complexity of Windows Installer. They must be used only when necessary and they must be written with full rollback support so that they are capable of undoing all changes that were applied to the system in case the installer fails and must roll back changes.
This is hard and difficult work and custom actions are a big, complex and error prone issue - a can of worms.
Often minor application design changes can allow custom actions to be replaced by standard MSI features, or various MSI extensions available in third party tools and in WiX.
Executables and scripts that run correctly on their own may fail when run as part of an MSI due to the complex impersonation, elevation and runtime design of Windows Installer. These are not trivial things to get right. An MSI install is an intricate transaction with elevated and impersonated sequences that is very hard to deal with.
Custom action types
Windows Installer supports custom actions implemented as purpose built, native (win32) executables and dlls as well as scripts such as JavaScript or VBScript.
Some even use .NET binaries (C#, VB.NET, DTF, etc...) to run custom actions - this is not recommended due to their prerequisite need for the .NET Framework. These binaries are referred to as "managed code" and can't run without the correct .NET framework installed.
Finally there are PowerShell custom actions that are both scrips and managed code combined - and they should not be used since they require the .NET framework.
In the future, when the .NET framework might be guaranteed to exist on all Windows computers this managed code might be a viable options for general use, but as of now the consensus seems to be that these actions are too risky and unreliable.
Common, sample custom actions (some common, custom tasks are frequently implemented as custom actions because they are not natively supported by Windows Installer but frequently needed).
Manage Windows Shares (usually create).
Apply custom ACL permissioning (there is some built-in MSI support for this).
Modify NT privileges.
Configure DCOM.
Manage groups and users.
Configure per-user Office Addins.
Persist installer properties (for repair and reinstall).
Custom and company specific launch conditions.
IP-Configuration redirects for IIS
Encrypt or obfuscate content for data security
Etc...
Most of the custom functionalities mentioned above are now available in the WiX framework as a custom C++ dll - and other tools have some similar, custom features. You should always prefer these ready-made solutions to your own custom actions since rollback is properly implemented in WiX and the implementation is well tested.
Applying custom ACL permissions and modifying NT privileges are considered "deployment anti-patterns" by most deployment specialists. The requirement to do so indicates poor (lazy) application design.
Custom action summary.
Writing a custom action on your own should be a rare event that is unique and that has not been done (better) before.
Minor application re-design can often eliminate unwise and complex deployment constructs. In fact, almost always.
For example: application configuration should happen on first application launch, and not during the setup.
The setup should prepare the application for first launch, and perform tasks that require elevated rights (only).
User data initialization is a particularly bad thing to use setup scripts to perform. All of this should be done in the application launch sequence.
You should enforce proper rollback support.
This is complex and hard work.
Almost all script custom actions I have seen do not implement rollback at all.
You should write with minimal dependencies.
Preferably use C++ or Installscript or maybe JavaScript (only for internal, corporate deployment in my view). Avoid VB Script, and definitely avoid .NET code in C#/DTF or PowerShell scripts. There is some discussion on the issue of managed code. MSI experts like Chris Painter believes C#/DTF custom actions are ready for prime time, whereas the general consensus seems to be to err on the side of caution and rely on C++ dlls until a proper .NET runtime environment can be guaranteed. Here is a long-winded "discussion" of this issue: Windows Installer fails on Win 10 but not Win 7 using WIX
Robust code is difficult write in script. Scripts are fragile, hard to debug, lack advanced language features (particularly error handling) and are vulnerable to anti-virus blocking.
The only real advantages of scripts are that they are transparent and inspectable and the whole source is embedded in the MSI file (no version control issues). Corporate teams that hand off work to each other frequently might use JavaScript (there is a lot of legacy VB Script use as well - but that language is very poor for error handling).
Managed code has runtime requirements that can't be guaranteed at the time of writing - and this has been the situation for a very long time now.
PowerShell is both managed code and a script. Avoid it. Installshield supports it as a type of custom action. It remains to be seen how successful it will be. I would never use it unless forced to.
And much more...
Additional complications For Deployment
There are many additional complications when delivering a professional setup such as delivering setups in different languages (localization), branding setups for different resellers (OEM), ensuring the setup works on all required operating systems in different language versions, delivering separate setups for x86 and x64 machines, delivering a scaled down "viewer version" of the application, making combined setups for client and server installations (can be run on both the server and the client installing different components - not recommended if you ask me - details), and not to mention deploying to different embedded devices such as phones, pocket pcs, smart phones etc...
Certain "Deployment Anti-Patters" are also problematic to deal with (the linked answer is an "experiment" and I am not too happy with it - a work in progress, but it is intended as a check list for developers for their deployment efforts to avoid really common problems). These are bad constructs required in setups to make poorly designed applications run properly. They include things such as applying custom permissioning (write access in otherwise locked down paths, etc...), customizing NT privileges (typically "run as service" for a user account, or much worse), or applying excessive use of complex custom actions that make unpredictable changes to the system (these can really be anything and be very dangerous). Messing up the silent install is also a huge, common problem - it is terrible for corporate use of your setup. Deploying excessive amounts of user-specific data with your setup can also be problematic (hard to control complications). And there are many other, more specific problems to relate to.
Here is a post with the overall issue of setup and deployment seen in the larger context of application marketing and sales.
Doing Your Own Deployment
You will need a tool or a framework to deliver your own setups. Here is an answer describing different tools used to create installers: What installation product to use? InstallShield, WiX, Wise, Advanced Installer, etc. All attempts have been made to make the descriptions as objective as possible - describing real world experience with positives and negatives.
The commercial tools described in the link above are most excellent tools - and they tend to speed things up with good GUIs and ready-made solutions for common requirements, but developers should consider trying WiX - the new way to create MSI files. Please read this post for background information:
Windows Installer and the creation of WiX (read this if you are trying to "find your feet with WiX" and want to understand what the technology is all about and where it is coming from).
WiX has a learning curve but is "developer friendly" in many ways. For one it is a project type in Visual Studio (once you install it), and it allows a setup to be defined in XML and compiled to MSI as you would a normal binary. This allows proper source control, branching and collaboration. Plus it is free and open source. I feel it is OK to recommend a free framework, especially since it is well maintained. Expect a learning experience though. Here are some suggestions for a "flying start" with WiX.
Many programs make use of graphics, sound, and other drivers which are supplied and maintained by third parties. In many cases, these drivers may use underlying hardware or other system features in ways that Windows itself knows nothing about. If two programs, each with its own driver and unaware of the other's existence, tried to use the same hardware, they would likely interfere with each other in unpredictable undesirable ways (e.g. one might overwrite graphical textures loaded by the other). To avoid such problems, Microsoft recommends that has applications install drivers in such a way that the two programs that need the same driver can share the same driver instance.
The approach Microsoft takes is not the only means of ensuring that multiple programs using the same hardware go through the same driver. A system could also have programs temporarily load drivers when they start, and have drivers automatically unload when they're done. The difficulty with that approach is that if a program which uses an old driver is launched, and while it is running a program which needs a newer version of that driver is launched, the new program would not be able to run unless or until the old program shuts down its driver and switches to using a new one. Such a hassle is probably unavoidable, but having to deal with such things every time a program is launched is probably less bothersome than dealing with it only once when a program is installed.
All that having been said, while it may be helpful to be able to install a program once and have any "driver" issues taken care of once and for all, there's also something to be said for being able to simply run a program without having to make "permanent" modifications to the system. There shouldn't be any particular obstacles to programs being able to use either "temporary" or permanent drivers, but I know of no particular efforts to facilitate such designs.
Beside copying the files for You, the installer may also add registry entries needed by the program (if any), add values to environment variables (PATH), create icons on desktop, so You don't have to do this manually etc.
To quote Wikipedia, "Installation typically involves code being copied/generated from the installation files to new files on the local computer for easier access by the operating system." For simple programs, there is no need to install anything, but more complex ones can update, add links, etc. automatically if installed.

SCCM 2012 best practice, create an application for an msi and a deployment for an exe?`

New to SCCM 2012 and have a lot of applications with msi's that I am creating applications for. I've also been able to create a few applications with exe's. Is the only reason to use a package, if you need to run multiple programs or apps in succession?
One of the reasons to use a package vs application model is handling configuration outside of the MSI / EXE. Say for instance, your MSI / EXE does everything but it doesn't set any of the configuration items like the license information, or which server you need to connect to. Now most of these things can be handled via a custom action within your MST (Transform) by using Installshield, but if you have an executable it gets a bit more complicated because there isn't really anyway to "hook" into the installer to provide additional configuration items.

How to Update the installed Window Application (Creating Patches)

i have requirement. i have created the window application and i have created the setup of that application that has been installed to client machine.
Now the requirement is that if i will do the further modification to the project the client not need to install whole application again instead client only need to install Update of new version. like using Patches or something. How can i do this is there and tool in VS from which we can create the update patches or something.
Please Help..
There are several options, but they depend on which installer you used in the first place.
It is very easy with Inno Setup, as (if the file items are configured correctly) InnoSetup will detect that the application is already installed and only copy modified files, even though you publish the entire setup. This will be automatic.
If you used the built-in Visual Studio setup project, it is also possible, but you must set a different "upgrade id" in the setup properties. I haven't worked much with this, yet.
A third option is using Windows Installer XML (WIX), which is able to generate patch installers, but I haven't worked much with WIX yet.
One last option would be to write something yourself that is able to exchange old files against new files, but you'd have to keep UAC in mind for newer Windows versions.
I have solved the problem...using ClickOne Setup of VS. i publish the win form to a specific URl and each time when application launchs its check the Upgraded version if available it install and run.
http://www.15seconds.com/issue/041229.htm