Let's say I want to take the sin of 1 through 100 (in degrees).
I come from a C background so my instinct is to loop 1 through 100 in a for loop (something I can do in Matlab). In a matrix/vector/array I would store sin(x) where x is the counter of the for loop.
I cannot figure out how to do this in Matlab. Do I create a array like
x = [1 .. 100];
And then do
x[offset] = numberHere;
I know the "correct" way. For operations like addition you use .+ instead of + and with a function like sin I'm pretty sure you just do
resultArray = sin(x);
I just want to know that I could do it the C way in case that ever came up, thus my question here on SO. :)
% vectorized
x = sin((1:100)*pi/180);
or
% nonvectorized
x=[];
for i = 1:100
x(i) = sin(i*pi/180);
end
I beleive this can actually be done as a one liner in MatLab:
x = sind(1:100);
Note that you use sind() instead of sin(). Sin() takes radians as arguments.
As others have already pointed out there are for-loops in MATLAB as well.
help for
should give you everything you need about how it works. The difference from C is that the loop can go over objects and not only an integer:
objects = struct('Name', {'obj1', 'obj2'}, 'Field1', {'Value1','Value2'});
for x = objects
disp(sprintf('Object %s Field1 = %d', x.Name, x.Field1))
end
That example will output:
Object obj1 Field1 = Value1
Object obj2 field1 = Value2
This could have been done as
for i=1:length(objects)
x = objects(i);
disp(sprintf('Object %s Field1 = %d', x.Name, x.Field1))
end
And now to what I really wanted to say: If you ever write a for loop in MATLAB, stop and think!. For most tasks you can vectorize the code so that it uses matrix operations and builtin functions instead of looping over the data. This usually gives a huge speed gain. It is not uncommon that vectorized code executes 100x faster than looping code. Recent versions of MATLAB has JIT compilation which makes it less dramatic than before, but still: Always vectorize if you can.
#Daniel Fath
I think you'll need the final line to read
resultArray(i) = sin(x(i)) (rather than x(1))
I think you can also do:
for i = x
...
though that will behave differently if x is not a simple 1-100 vector
Hmm, if understand correctly you want a loop like structure
resultArray = zeros(1,length(x)) %% initialization aint necessary I just forgot how you dynamically add members :x
for i = 1:length(x) %% starts with 1 instead of zero
resultArray(i) = sin(x(i))
end
Warning I didn't test this but it should be about right.
Related
I have a vector, v, of N positive integers whose values I do not know ahead of time. I would like to construct another vector, a, where the values in this new vector are determined by the values in v according to the following rules:
- The elements in a are all integers up to and including the value of each element in v
- 0 entries are included only once, but positive integers appear twice in a row
For example, if v is [1,0,2] then a should be: [0,1,1,0,0,1,1,2,2].
Is there a way to do this without just doing a for-loop with lots of if statements?
I've written the code in loop format but would like a vectorized function to handle it.
The classical version of your problem is to create a vector a with the concatenation of 1:n(i) where n(i) is the ith entry in a vector b, e.g.
b = [1,4,2];
gives a vector a
a = [1,1,2,3,4,1,2];
This problem is solved using cumsum on a vector ones(1,sum(b)) but resetting the sum at the points 1+cumsum(b(1:end-1)) corresponding to where the next sequence starts.
To solve your specific problem, we can do something similar. As you need two entries per step, we use a vector 0.5 * ones(1,sum(b*2+1)) together with floor. As you in addition only want the entry 0 to occur once, we will just have to start each sequence at 0.5 instead of at 0 (which would yield floor([0,0.5,...]) = [0,0,...]).
So in total we have something like
% construct the list of 0.5s
a = 0.5*ones(1,sum(b*2+1))
% Reset the sum where a new sequence should start
a(cumsum(b(1:end-1)*2+1)+1) =a(cumsum(b(1:end-1)*2+1)+1)*2 -(b(1:end-1)+1)
% Cumulate it and find the floor
a = floor(cumsum(a))
Note that all operations here are vectorised!
Benchmark:
You can do a benchmark using the following code
function SO()
b =randi([0,100],[1,1000]);
t1 = timeit(#() Nicky(b));
t2 = timeit(#() Recursive(b));
t3 = timeit(#() oneliner(b));
if all(Nicky(b) == Recursive(b)) && all(Recursive(b) == oneliner(b))
disp("All methods give the same result")
else
disp("Something wrong!")
end
disp("Vectorised time: "+t1+"s")
disp("Recursive time: "+t2+"s")
disp("One-Liner time: "+t3+"s")
end
function [a] = Nicky(b)
a = 0.5*ones(1,sum(b*2+1));
a(cumsum(b(1:end-1)*2+1)+1) =a(cumsum(b(1:end-1)*2+1)+1)*2 -(b(1:end-1)+1);
a = floor(cumsum(a));
end
function out=Recursive(arr)
out=myfun(arr);
function local_out=myfun(arr)
if isscalar(arr)
if arr
local_out=sort([0,1:arr,1:arr]); % this is faster
else
local_out=0;
end
else
local_out=[myfun(arr(1:end-1)),myfun(arr(end))];
end
end
end
function b = oneliner(a)
b = cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),a,'UniformOutput',false));
end
Which gives me
All methods give the same result
Vectorised time: 0.00083574s
Recursive time: 0.0074404s
One-Liner time: 0.0099933s
So the vectorised one is indeed the fastest, by a factor approximately 10.
This can be done with a one-liner using eval:
a = eval(['[' sprintf('sort([0 1:%i 1:%i]) ',[v(:) v(:)]') ']']);
Here is another solution that does not use eval. Not sure what is intended by "vectorized function" but the following code is compact and can be easily made into a function:
a = [];
for i = 1:numel(v)
a = [a sort([0 1:v(i) 1:v(i)])];
end
Is there a way to do this without just doing a for loop with lots of if statements?
Sure. How about recursion? Of course, there is no guarantee that Matlab has tail call optimization.
For example, in a file named filename.m
function out=filename(arr)
out=myfun(in);
function local_out=myfun(arr)
if isscalar(arr)
if arr
local_out=sort([0,1:arr,1:arr]); % this is faster
else
local_out=0;
end
else
local_out=[myfun(arr(1:end-1)),myfun(arr(end))];
end
end
end
in cmd, type
input=[1,0,2];
filename(input);
You can take off the parent function. I added it just hoping Matlab can spot the recursion within filename.m and optimize for it.
would like a vectorized function to handle it.
Sure. Although I don't see the point of vectorizing in such a unique puzzle that is not generalizable to other applications. I also don't foresee a performance boost.
For example, assuming input is 1-by-N. In cmd, type
input=[1,0,2];
cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),input,'UniformOutput',false)
Benchmark
In R2018a
>> clear all
>> in=randi([0,100],[1,100]); N=10000;
>> T=zeros(N,1);tic; for i=1:N; filename(in) ;T(i)=toc;end; mean(T),
ans =
1.5647
>> T=zeros(N,1);tic; for i=1:N; cell2mat(arrayfun(#(x)sort([0,1:x,1:x]),in,'UniformOutput',false)); T(i)=toc;end; mean(T),
ans =
3.8699
Ofc, I tested with a few more different inputs. The 'vectorized' method is always about twice as long.
Conclusion: Recursion is faster.
I have a system of 5 ODEs with nonlinear terms involved. I am trying to vary 3 parameters over some ranges to see what parameters would produce the necessary behaviour that I am looking for.
The issue is I have written the code with 3 for loops and it takes a very long time to get the output.
I am also storing the parameter values within the loops when it meets a parameter set that satisfies an ODE event.
This is how I have implemented it in matlab.
function [m,cVal,x,y]=parameters()
b=5000;
q=0;
r=10^4;
s=0;
n=10^-8;
time=3000;
m=[];
cVal=[];
x=[];
y=[];
val1=0.1:0.01:5;
val2=0.1:0.2:8;
val3=10^-13:10^-14:10^-11;
for i=1:length(val1)
for j=1:length(val2)
for k=1:length(val3)
options = odeset('AbsTol',1e-15,'RelTol',1e-13,'Events',#eventfunction);
[t,y,te,ye]=ode45(#(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)]),0:time,[b,q,s,r,n],options);
if length(te)==1
m=[m;val1(i)];
cVal=[cVal;val2(j)];
x=[x;val3(k)];
y=[y;ye(1)];
end
end
end
end
Is there any other way that I can use to speed up this process?
Profile viewer results
I have written the system of ODEs simply with the a format like
function s=systemFunc(t,y,p)
s= zeros(2,1);
s(1)=f*y(1)*(1-(y(1)/k))-p(1)*y(2)*y(1)/(p(2)*y(2)+y(1));
s(2)=p(3)*y(1)-d*y(2);
end
f,d,k are constant parameters.
The equations are more complicated than what's here as its a system of 5 ODEs with lots of non linear terms interacting with each other.
Tommaso is right. Preallocating will save some time.
But I would guess that there is fundamentally not a lot you can do since you are running ode45 in a loop. ode45 itself may be the bottleneck.
I would suggest you profile your code to see where the bottleneck is:
profile on
parameters(... )
profile viewer
I would guess that ode45 is the problem. Probably you will find that you should actually focus your time on optimizing the systemFunc code for performance. But you won't know that until you run the profiler.
EDIT
Based on the profiler output and additional code, I see some things that will help
It seems like the vectorization of your values is hurting you. Instead of
#(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)])
try
#(t,y)systemFunc(t,y,val1(i),val2(j),val3(k))
where your system function is defined as
function s=systemFunc(t,y,p1,p2,p3)
s= zeros(2,1);
s(1)=f*y(1)*(1-(y(1)/k))-p1*y(2)*y(1)/(p2*y(2)+y(1));
s(2)=p3*y(1)-d*y(2);
end
Next, note that you don't have to preallocate space in the systemFunc, just combine them in the output:
function s=systemFunc(t,y,p1,p2,p3)
s = [ f*y(1)*(1-(y(1)/k))-p1*y(2)*y(1)/(p2*y(2)+y(1)),
p3*y(1)-d*y(2) ];
end
Finally, note that ode45 is internally taking about 1/3 of your runtime. There is not much you will be able to do about that. If you can live with it, I would suggest increasing your 'AbsTol' and 'RelTol' to more reasonable numbers. Those values are really small, and are making ode45 run for a really long time. If you can live with it, try increasing them to something like 1e-6 or 1e-8 and see how much the performance increases. Alternatively, depending on how smooth your function is, you might be able to do better with a different integrator (like ode23). But your mileage will vary based on how smooth your problem is.
I have two suggestions for you.
Preallocate the vectors in which you store your results and use an
increasing index to populate them into each iteration.
Since the options you use are always the same, instantiate then
outside the loop only once.
Final code:
function [m,cVal,x,y] = parameters()
b = 5000;
q = 0;
r = 10^4;
s = 0;
n = 10^-8;
time = 3000;
options = odeset('AbsTol',1e-15,'RelTol',1e-13,'Events',#eventfunction);
val1 = 0.1:0.01:5;
val1_len = numel(val1);
val2 = 0.1:0.2:8;
val2_len = numel(val2);
val3 = 10^-13:10^-14:10^-11;
val3_len = numel(val3);
total_len = val1_len * val2_len * val3_len;
m = NaN(total_len,1);
cVal = NaN(total_len,1);
x = NaN(total_len,1);
y = NaN(total_len,1);
res_offset = 1;
for i = 1:val1_len
for j = 1:val2_len
for k = 1:val3_len
[t,y,te,ye] = ode45(#(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)]),0:time,[b,q,s,r,n],options);
if (length(te) == 1)
m(res_offset) = val1(i);
cVal(res_offset) = val2(j);
x(res_offset) = val3(k);
y(res_offset) = ye(1);
end
res_offset = res_offset + 1;
end
end
end
end
If you only want to preserve result values that have been correctly computed, you can remove the rows containing NaNs at the bottom of your function. Indexing on one of the vectors will be enough to clear everything:
rows_ok = ~isnan(y);
m = m(rows_ok);
cVal = cVal(rows_ok);
x = x(rows_ok);
y = y(rows_ok);
In continuation of the other suggestions, I have 2 more suggestions for you:
You might want to try with a different solver, ODE45 is for non-stiff problems, but from the looks of it, it might seem like your problem could be stiff (parameters have a different order of magnitude). Try for instance with the ode23s method.
Secondly, without knowing which event you are looking for, maybe it is possible for you to use a logarithmic search rather than a linear one. e.g. the Bisection method. This will severely cut down on the number of times you have to solve the equation.
I have to construct the following function in MATLAB and am having trouble.
Consider the function s(t) defined for t in [0,4) by
{ sin(pi*t/2) , for t in [0,1)
s(t) = { -(t-2)^3 , for t in [1,3)*
{ sin(pi*t/2) , for t in [3,4)
(i) Generate a column vector s consisting of 512 uniform
samples of this function over the interval [0,4). (This
is best done by concatenating three vectors.)
I know it has to be something of the form.
N = 512;
s = sin(5*t/N).' ;
But I need s to be the piecewise function, can someone provide assistance with this?
If I understand correctly, you're trying to create 3 vectors which calculate the specific function outputs for all t, then take slices of each and concatenate them depending on the actual value of t. This is inefficient as you're initialising 3 times as many vectors as you actually want (memory), and also making 3 times as many calculations (CPU), most of which will just be thrown away. To top it off, it'll be a bit tricky to use concatenate if your t is ever not as you expect (i.e. monotonically increasing). It might be an unlikely situation, but better to be general.
Here are two alternatives, the first is imho the nice Matlab way, the second is the more conventional way (you might be more used to that if you're coming from C++ or something, I was for a long time).
function example()
t = linspace(0,4,513); % generate your time-trajectory
t = t(1:end-1); % exclude final value which is 4
tic
traj1 = myFunc(t);
toc
tic
traj2 = classicStyle(t);
toc
end
function trajectory = myFunc(t)
trajectory = zeros(size(t)); % since you know the size of your output, generate it at the beginning. More efficient than dynamically growing this.
% you could put an assert for t>0 and t<3, otherwise you could end up with 0s wherever t is outside your expected range
% find the indices for each piecewise segment you care about
idx1 = find(t<1);
idx2 = find(t>=1 & t<3);
idx3 = find(t>=3 & t<4);
% now calculate each entry apprioriately
trajectory(idx1) = sin(pi.*t(idx1)./2);
trajectory(idx2) = -(t(idx2)-2).^3;
trajectory(idx3) = sin(pi.*t(idx3)./2);
end
function trajectory = classicStyle(t)
trajectory = zeros(size(t));
% conventional way: loop over each t, and differentiate with if-else
% works, but a lot more code and ugly
for i=1:numel(t)
if t(i)<1
trajectory(i) = sin(pi*t(i)/2);
elseif t(i)>=1 & t(i)<3
trajectory(i) = -(t(i)-2)^3;
elseif t(i)>=3 & t(i)<4
trajectory(i) = sin(pi*t(i)/2);
else
error('t is beyond bounds!')
end
end
end
Note that when I tried it, the 'conventional way' is sometimes faster for the sampling size you're working on, although the first way (myFunc) is definitely faster as you scale up really a lot. In anycase I recommend the first approach, as it is much easier to read.
Hello I have written this to determine a root using Newton's method. The algorithm works. I also tried to implement an Experimental order of convergence EOC. It also works but I get the result that the order of convergence for Newton's method is 1 when in fact it is 2.
function [x,y,eoc,k]=newnew(f,df,x0,xe,eps,kmax)
x = x0;
y = feval(f,x);
for m=1:kmax
z = -y/feval(df,x);
x = x + z;
y = feval(f,x);
k = m;
for n=m
Ek=abs(x-xe);
end
for n=m+1
Ekp=abs(x-xe);
end
eoc=log(Ek)/log(Ekp);
if abs(y)<eps
return
end
end
disp('no convergence');
end
what is wrong?
When you say Ek=abs(x-xe) and Exp=abs(x-xe), they are exactly the same thing! That's why eoc evaluates to 1 every time.
Notice that you have no n in those equations. In fact, you don't need those extra for n=m loops either. Inside the for m=1:kmax loop, m is a single value not an array.
eoc needs to be calculated by comparing the previous loop iteration to the current one (since it doesn't make much sense to compare to a future loop iteration which hasn't happened yet). Because this looks like homework, I won't give you any code.. but this is a very strong hint.
Is there any way to use a for-loop in MATLAB with a custom step? What I want to do is iterate over all powers of 2 lesser than a given number. The equivalent loop in C++ (for example) would be:
for (int i = 1; i < 65; i *= 2)
Note 1: This is the kind of iteration that best fits for-loops, so I'd like to not use while-loops.
Note 2: I'm actually using Octave, not MATLAB.
Perhaps you want something along the lines of
for i=2.^[1:6]
disp(i)
end
Except you will need to figure out the range of exponents. This uses the fact that since
a_(i+1) = a_i*2 this can be rewritten as a_i = 2^i.
Otherwise you could do something like the following
i=1;
while i<65
i=i*2;
disp(i);
end
You can iterate over any vector, so you can use vector operations to create your vector of values before you start your loop. A loop over the first 100 square numbers, for example, could be written like so:
values_to_iterate = [1:100].^2;
for i = values_to_iterate
i
end
Or you could loop over each position in the vector values_to_iterate (this gives the same result, but has the benefit that i keeps track of how many iterations you have done - this is useful if you are writing a result from each loop sequentially to an output vector):
values_to_iterate = [1:100].^2;
for i = 1:length(values_to_iterate)
values_to_iterate(i)
results_vector(i) = some_function( values_to_iterate(i) );
end
More concisely, you can write the first example as simply:
for i = [1:100].^2
i
end
Unlike in C, there doesn't have to be a 'rule' to get from one value to the next.
The vector iterated over can be completely arbitrary:
for i = [10, -1000, 23.3, 5, inf]
i
end