(Non-Relational) DBMS Design Resource - nosql

As a personal project, I'm looking to build a rudimentary DBMS. I've read the relevant sections in Elmasri & Navathe (5ed), but could use a more focused text- something a bit more practical and detail-oriented, with real-world recommendations- as E&N only went so deep.
The rub is that I want to play with novel non-relational data models. While a lot of E&N was great- indexing implementation details in particular- the more advanced DBMS implementation was only targeted to a relational model.
I'd like to defer staring at DBMS source for a while if I can until I've got a better foundation. Any ideas?

First of all you have to understand the properties of each system. i can offer you to read this post. it's the first step to understand NOSQL or Not Only SQL.Secondly you can check this blog post to understand all these stuff visually.
Finally glance at open source projects such as Mongodb, Couchdb etc. to see the list you can go here

Actually, the first step would be to understand hierarchal, network, navigational, object models which are alternatives to relational. I'm not sure where XML fits in i.e. what model it is. As far as structure, research B-tree (not binary trees) implementation.

Related

Key value oriented database vs document oriented database

I have recently started learning NO SQL databases and I came across Key-Value oriented databases and Document oriented databases. Since they have a similar structure, aren't they saved and retrieved the exact same way? And if that is the case then why do we define them as separate types? Otherwise, how they are saved in the file system?
To get started it is better to pin point the least wrong vocabulary. What used to be called nosql is too broad in scope, and often there is no intersection feature-wise between two database that are dubbed nosql except for the fact that they somehow deal with "data". What program does not deal with data?! In the same spirit, I avoid the term Relational Database Management System (RDBMS). It is clear to most speakers and listeners that RDBMS is something among SQL Server, some kind of Oracle database, MySQL, PostgreSQL. It is fuzzy whether that includes SQLite, that is already an indicator, that "relational database" ain't the perfect word to describe the concept behind it. Even more so, what people usually call nosql never forbid relations. Even on top of "key-value" stores, one can build relations. In a Resource Description Framework database, the equivalent of SQL rows are called tuple, triple, quads and more generally and more simply: relations. Another example of relational database are database powered by datalog. So RDBMS and relational database is not a good word to describe the intended concepts, and when used by someone, only speak about the narrow view they have about the various paradigms that exists in the data(base) world.
In my opinion, it is better to speak of "SQL databases" that describe the databases that support a subset or superset of SQL programming language as defined by the ISO standard.
Then, the NoSQL wording makes sense: database that do not provide support for SQL programming language. In particular, that exclude Cassandra and Neo4J, that can be programmed with a language (respectivly CQL and Cypher / GQL) which surface syntax looks like SQL, but does not have the semantic of SQL (neither a superset, nor a subset of SQL). Remains Google BigQuery, which feels a lot like SQL, but I am not familiar enough with it to be able to draw a line.
Key-value store is also fuzzy. memcached, REDIS, foundationdb, wiredtiger, dbm, tokyo cabinet et. al are very different from each other and are used in verrrrrrrrrrry different use-cases.
Sorry, document-oriented database is not precise enough. Historically, they were two main databases, so called document database: ElasticSearch and MongoDB. And those yet-another-time, are very different software, and when used properly, do not solve the same problems.
You might have guessed it already, your question shows a lack of work, and as phrased, and even if I did not want to shave a yak regarding vocabulary related to databases, is too broad.
Since they have a similar structure,
No.
aren't they saved and retrieved the exact same way?
No.
And if that is the case then why do we define them as separate types?
Their programming interface, their deployment strategy and their internal structure, and intended use-cases are much different.
Otherwise, how they are saved in the file system?
That question alone is too broad, you need to ask a specific question at least explain your understanding of how one or more database work, and ask a question about where you want to go / what you want to understand. "How to go from point A-understanding (given), to point B-understanding (question)". In your question point A is absent, and point B is fuzzy or too-broad.
Moar:
First, make sure you have solid understanding of an SQL database, at the very least the SQL language (then dive into indices and at last fine-tuning). Without SQL knowledge, your are worthless on the job market. If you already have a good grasp of SQL, my recommendation is to forgo everything else but FoundationDB.
If you still want "benchmark" databases, first set a situation (real or imaginary) ie. a project that you know well, that requires a database. Try to fit several databases to solve the problems of that project.
Lastly, if you have a precise project in mind, try to answer the following questions, prior to asking another question on database-design:
What guarantees do you need. Question all the properties of ACID: Atomic, Consistent, Isolation, Durability. Look into BASE. You do not necessarily need ACID or BASE, but it is a good basis that is well documented to know where you want / need to go.
What is size of the data?
What is the shape of the data? Are they well defined types? Are they polymorphic types (heterogeneous shapes)?
Workload: Write-once then Read-only, mostly reads, mostly writes, a mix of both. Answer also the question how fast or slow can be writes or reads.
Querying: How queries look like: recursive / deep, columns or rows, or neighboor hood queries (like graphql and SQL without recursive queries do). Again what is the expected time to response.
Do not forgo to at least the review deployement and scaling strategies prior to commit to a particular solution.
On my side, I picked up foundationdb because it is the most versatile in those regards, even if at the moment it requires some code to be a drop-in replacement for all postgresql features.

Neo4j instead of relational database

I am implementing a sinatra/rails based web portal that might eventually have few many:many relationships between tables/models. This is a one man team and part time but real world app.
I discussed my entity with someone and was advised to try neo4j. Coming from real 'non-sexy' enterprise world, my inclination is to use relational db until it stops scaling or becomes a nightmare because of sharding etc and then think about anything else.
HOWEVER,
I am using postgres for the first time in this project along with datamapper and its taking me time to get started very fast
I am just trying out few things and building more use cases so I consitently have to update my schema (prototyping idea and feedback from beta) . I wont have to do this in neo4j (except changing my queries)
Seems like its very easy to setup search using neo4j . But Postgres can do full text search as well.
Postgres recently announced support for json and javascript. Wondering if I should just stick with PG and invest more time learning PG (which has a good community) instead neo4j.
Looking for usecases where neo4j is better, especially at protyping/initial phase of a project. I understand if the website grows I might end up having multiple persistent technologies like s3, relational (PG), mongo etc.
Also it would be good to know how it plays out with Rails/Ruby ecosystem.
Update1:
I got a lot of good answers and seems like the right thing to do is stick with Postgres for now (especially since I deploy to heroku)
However the idea of being schema-less is tempting. Basically I am thinking of a approach where you don't define a datamodel until you have say 100-150 users and you have yourself figured out a good schema (business use cases) for your product , while you are just demoing the concept and getting feedback with limited signups. Then one can decide a schema and start with relational.
Would be nice to know if there are easy to use schema/less persistence option (based on ease to use/setup for new user) that might give up say scaling etc.
Graph databases should be considered if you have a really chaotic data model. They were needed to express highly complex relationships between entities. To do that, they store relationships at the data level whereas RDBMS use a declarative approach. Storing relationships only makes sense if these relationships are very different, otherwise you'll just end up duplicating data over and over, taking a lot of space for nothing.
To require such variety in relationships you'd have to handle huge amount of data. This is where graph databases shines because instand of doing tons of joins, they just pick a record and follow his relationships. To support my statement : you'll notice that every use cases on Neo4j's website are dealing with very complex data.
In brief, if you don't feel concerned with what I said above, I think you should use another technology. If this is just about scaling, schemalessness or starting fast a project, then look at other NoSQL solutions (more specifically, either column or document oriented databases). Otherwise you should stick with PostgreSQL. You could also, like you said, consider polyglot persistence,
About your update, you might consider hStore. I think it fits your requirements. It's a PostgreSQL module which also works on Heroku.
I don't think I agree that you should only use a graph database when your data model is very complex. I'm sure they could handle a simple data model/relationships as well.
If you have no prior experience with Neo4j or Postgres, then most likely both with take quite a bit of time to learn well.
Some things to keep in mind when picking:
It's not just about development against a database technology. You should consider deployment as well. How easy is it to deploy and scale Postgres/Neo4j?
Consider the community and tools around each technology. Is there a data mapper for Neo4j like there is for Postgres?
Consider that the data models are considerably different between the two. If you can already think relationally, then I'd probably stick with Postgres. If you go with Neo4j you're going to be making a lot of mistakes for several months with your data models.
Over time I've learned to keep it simple when I can. Postgres might be the boring choice compared to Neo4j, but boring doesn't keep you up at night. =)
Also I never see anyone mention it, but you should look at Riak (http://basho.com/riak/) too. It's a document database that also provides relationships (links) between objects. Not as mature as a graph database, but it can connect a few entities quickly.
The most appropriate choice depends on what problem you are trying to solve.
If you just have a few many to many tables, a relational database can be fine. In general, there is better OR-mapper support for relational databases, as they are much older and have a standardized interface and row-column structure. They also have been improved on for a long time, so they are stable and optimized for what they are doing.
A graph database is better if e.g. your problem is more about the connections between entities, especially if you need higher distance connections, like "detect cycles (of unspecified length)", some "what do friends-of-a-friend like". Things like that get unwieldy when restricted to SQL joins. A problem specific language like cypher in case of Neo4j makes that much more concise. On the downside, there are mappers between graph dbs and objects, but not for every framework and language under the sun.
I recently implemented a system prototype using neo4j and it was very useful to be able to talk about the structure and connections of our data and be able to model that one to one in the data storage. Also, adding other connections between data points was easy, neo4j being a schemaless storage. We ended up switching to mongodb due to troubles with write performance, but I don't think we could have finished the prototype with that in the same time.
Other NoSQL datastores like document based, column, key-value also cover specific usecases. Polyglot persistence is definitively something to look at, so keep your choice of backend reasonably separated from your business logic, to allow you to change your technology later if you learned something new.

Confusion about NoSQL Design

I know that the NoSQL is not the relational database therefore I cannot draw the ERD or other method which can only be applied to relational database.
My confusion is: What kind of method or diagram should I illustrate to design a NoSQL database?
Thanks.
Here's an abstract from a recent 10gen event presentation suggesting that mind maps are the most logical tool for the job. I expect more specialized tools to emerge, but in general, mind maps align well with non-relational schema design.
"Most of us are visual learners. Often, visual learners will find that information "clicks" when it is explained with the aid of a chart or picture. For MongoDB that picture is a leaf representing a natural approach to databases. In the RDBMS world a database schema is "visualized" through an Entity Relationship (ER) diagram. An ER diagram is the primary communication tool about an RDBMS data model. MongoDB provides a powerful dynamic database schema. However it is sometimes difficult to visualize. An accurate visualization of a MongoDB schema dramatically increases the ability to communicate the flexibility and power MongoDB between developers, architects, DBAs and end users. A mind map is a visual thinking tool that helps structure information, do better analysis, comprehend, synthesize and generate new ideas. Its power lies in its simplicity, much like MongoDB. Using a mind mapping open source tool, a clear and vibrant visualization of a dynamic MongoDB schema can be created that "clicks." Further, it works the other way around - mind maps can be used to create a dynamic schema in MongoDB. The mind mapping process allows non-technical business users to visually develop their requirements on the fly. During design process the mind map provides a flexible visual tool which changes in a fluid manner."
You can fairly easily use the standard tools however it depends upon your specific scenario and the problem you are looking to solve. I recently had a conversation about this actually: https://groups.google.com/forum/?fromgroups=#!topic/mongodb-user/xZCwEm06eU4 which might help however that conversation is also quite specialised.
I have been thinking ever since that instead of repeating myself on this I should actually write a manual for drawing UML diagrams, MongoDB style.
Maybe if you explain your perspective on what UML diagram you wish to draw then we could provide a more detailed answer on how to accomplish a type of NoSQL representation of them.

Databases non-ORM and Scala

What is the best non-ORM database to work with Scala? I find this link link text, but this does not answer my question fully.
Could be considered desirable features performance, scalability and facility to write complex structures of relationships between data.
Thanks
Do you mean non-relational? There are Scala client libraries/wrappers for many NoSQL databases, including Cassandra, MongoDB, Redis, Voldemort, CouchDB, etc.
If by "complex structures of relationships between data" you mean that you'd prefer not to have to normalize, any NoSQL database should do reasonably well.
However, note that none of them--to my knowledge--will do anything like enforcing a referential integrity constraint or dereferencing object navigation paths for you. For that you may want to consider a graph database or OODBMS; unfortunately I'm not aware of any that's open source, liberally licensed and clusterable.
Update: I just found OrientDB which actually meets all threetwo of these criteria.
Update 2: OrientDB's clustering support isn't released yet. As a wise man once said, two out of three ain't bad.
The best solution is probably not to worry about it...
Abstract away from the problem by using the pluggable-persistence support in Akka: http://doc.akkasource.org/persistence
Then you can try them all, and take your pick based on profiling results :)

Manual DAL & BLL vs. ORM

Which approach is better: 1) to use a third-party ORM system or 2) manually write DAL and BLL code to work with the database?
1) In one of our projects, we decided using the DevExpress XPO ORM system, and we ran across lots of slight problems that wasted a lot of our time. Amd still from time to time we encounter problems and exceptions that come from this ORM, and we do not have full understanding and control of this "black box".
2) In another project, we decided to write the DAL and BLL from scratch. Although this implied writing boring code many, many times, but this approach proved to be more versatile and flexible: we had full control over the way data was held in the database, how it was obtained from it, etc. And all the bugs could be fixed in a direct and easy way.
Which approach is generally better? Maybe the problem is just with the ORM that we used (DevExpress XPO), and maybe other ORMs are better (such as NHibernate)?
Is it worth using ADO Entiry Framework?
I found that the DotNetNuke CMS uses its own DAL and BLL code. What about other projects?
I would like to get info on your personal experience: which approach do you use in your projects, which is preferable?
Thank you.
My personal experience has been that ORM is usually a complete waste of time.
First, consider the history behind this. Back in the 60s and early 70s, we had these DBMSes using the hierarchical and network models. These were a bit of a pain to use, since when querying them you had to deal with all of the mechanics of retrieval: follow links between records all over the place and deal with the situation when the links weren't the links you wanted (e.g., were pointing in the wrong direction for your particular query). So Codd thought up the idea of a relational DBMS: specify the relationships between things, say in your query only what you want, and let the DBMS deal with figuring out the mechanics of retrieving it. Once we had a couple of good implementations of this, the database guys were overjoyed, everybody switched to it, and the world was happy.
Until the OO guys came along into the business world.
The OO guys found this impedance mismatch: the DBMSes used in business programming were relational, but internally the OO guys stored things with links (references), and found things by figuring out the details of which links they had to follow and following them. Yup: this is essentially the hierarchical or network DBMS model. So they put a lot of (often ingenious) effort into layering that hierarchical/network model back on to relational databases, incidently throwing out many of the advantages given to us by RDBMSes.
My advice is to learn the relational model, design your system around it if it's suitable (it very frequently is), and use the power of your RDBMS. You'll avoid the impedance mismatch, you'll generally find the queries easy to write, and you'll avoid performance problems (such as your ORM layer taking hundreds of queries to do what it ought to be doing in one).
There is a certain amount of "mapping" to be done when it comes to processing the results of a query, but this goes pretty easily if you think about it in the right way: the heading of the result relation maps to a class, and each tuple in the relation is an object. Depending on what further logic you need, it may or may not be worth defining an actual class for this; it may be easy enough just to work through a list of hashes generated from the result. Just go through and process the list, doing what you need to do, and you're done.
Perhaps a little of both is the right fit. You could use a product like SubSonic. That way, you can design your database, generate your DAL code (removing all that boring stuff), use partial classes to extend it with your own code, use Stored Procedures if you want to, and generally get more stuff done.
That's what I do. I find it's the right balance between automation and control.
I'd also point out that I think you're on the right path by trying out different approaches and seeing what works best for you. I think that's ultimately the source for your answer.
Recently I made the decision to use Linq to SQL on a new project, and I really like it. It is lightweight, high-performance, intuitive, and has many gurus at microsoft (and others) that blog about it.
Linq to SQL works by creating a data layer of c# objects from your database. DevExpress XPO works in the opposite direction, creating tables for your C# business objects. The Entity Framework is supposed to work either way. I am a database guy, so the idea of a framework designing the database for me doesn't make much sense, although I can see the attractiveness of that.
My Linq to SQL project is a medium-sized project (hundreds, maybe thousands of users). For smaller projects sometimes I just use SQLCommand and SQLConnection objects, and talk directly to the database, with good results. I have also used SQLDataSource objects as containers for my CRUD, but these seem clunky.
DALs make more sense the larger your project is. If it is a web application, I always use some sort of DAL because they have built-in protections against things like SQL injection attacks, better handling of null values, etc.
I debated whether to use the Entity Framework for my project, since Microsoft says this will be their go-to solution for data access in the future. But EF feels immature to me, and if you search StackOverflow for Entity Framework, you will find several people who are struggling with small, obtuse problems. I suspect version 2 will be much better.
I don't know anything about nHibernate, but there are people out there who love it and would not use anything else.
You might try using NHibernate. Since it's open source, it's not exactly a black box. It is very versatile, and it has many extensibility points for you to plug in your own additional or replacement functionality.
Comment 1:
NHibernate is a true ORM, in that it permits you to create a mapping between your arbitrary domain model (classes) and your arbitrary data model (tables, views, functions, and procedures). You tell it how you want your classes to be mapped to tables, for example, whether this class maps to two joined tables or two classes map to the same table, whether this class property maps to a many-to-many relation, etc. NHibernate expects your data model to be mostly normalized, but it does not require that your data model correspond precisely to your domain model, nor does it generate your data model.
Comment 2:
NHibernate's approach is to permit you to write any classes you like, and then after that to tell NHibernate how to map those classes to tables. There's no special base class to inherit from, no special list class that all your one-to-many properties have to be, etc. NHibernate can do its magic without them. In fact, your business object classes are not supposed to have any dependencies on NHibernate at all. Your business object classes, by themselves, have absolutely no persistence or database code in them.
You will most likely find that you can exercise very fine-grained control over the data-access strategies that NHibernate uses, so much so that NHibernate is likely to be an excellent choice for your complex cases as well. However, in any given context, you are free to use NHibernate or not to use it (in favor of more customized DAL code), as you like, because NHibernate tries not to get in your way when you don't need it. So you can use a custom DAL or DevExpress XPO in one BLL class (or method), and you can use NHibernate in another.
I recently took part in sufficiently large interesting project. I didn't join it from the beginning and we had to support already implemented architecture. Data access to all objects was implemented through stored procedures and automatically generated wrapper-methods on .NET that returned DataTable objects. The development process in such system was really slow and inefficient. We had to write huge stored procedure on PL/SQL for every query, that could be expressed in simple LINQ query. If we had used ORM, we would have implement project several times faster. And I don't see any advantage of such architecture.
I admit, that it is just particular not very successful project, but I made following conclusion: Before refusing to use ORM think twice, do you really need such flexibility and control over database? I think in most cases it isn't worth wasted time and money.
As others explain, there is a fundamental difficulty with ORM's that make it such that no existing solution does a very good job of doing the right thing, most of the time. This Blog Post: The Vietnam Of Computer Science echoes some of my feelings about it.
The executive summary is something along the lines of the assumptions and optimizations that are incompatible between object and relational models. although early returns are good, as the project progresses, the abstractions of the ORM fall short, and the extra overhead of working around it tends to cancel out the successes.
I have used Bold for Delphi four years now. It is great but it is not available anymore for sale and it lacks some features like databinding. ECO the successor has all that.
No I'm not selling ECO-licenses or something but I just think it is a pity that so few people realize what MDD (Model Driven Development) can do. Ability to solve more complex problems in less time and fewer bugs. This is very hard to measure but I have heard something like 5-10 more efficient development. And as I work with it every day I know this is true.
Maybe some traditional developer that is centered around data and SQL say:
"But what about performance?"
"I may loose control of what SQL is run!"
Well...
If you want to load 10000 instances of a table as fast as possible it may be better to use stored procedures, but most application don't do this. Both Bold and ECO use simple SQL queries to load data. Performance is highly dependent of the number of queries to the database to load a certain amount of data. Developer can help by saying this data belong to each other. Load them as effiecent as possible.
The actual queries that is executed can of course be logged to catch any performance problems. And if you really want to use your hyper optimized SQL query this is no problem as long as it don't update the database.
There is many ORM system to choose from, specially if you use dot.net. But honestly it is very very hard to do a good ORM framework. It should be concentrated around the model. If the model change, it should be an easy task to change database and the code dependent of the model. This make it easy to maintain. The cost for making small but many changes is very low. Many developers do the mistake to center around the database and adapt everthing around that. In my opinion this is not the best way to work.
More should try ECO. It is free to use an unlimited time as long the model is no more than 12 classes. You can do a lot with 12 classes!
I suggest you to use Code Smith Tool for creating Nettiers, that is a good option for developer.