Does Lua support Unicode? - unicode

Based on the link below, I'm confused as to whether the Lua programming language supports Unicode.
http://lua-users.org/wiki/LuaUnicode
It appears it does but has limitations. I simply don't understand, are the limitation anything big/key or not a big deal?

You can certainly store unicode strings in lua, as utf8. You can use these as you would any string.
However Lua doesn't provide any default support for higher-level "unicode aware" operations on such strings—e.g., counting string length in characters, converting lower-to-upper-case, etc. Whether this lack is meaningful for you really depends on what you intend to do with these strings.
Possible approaches, depending on your use:
If you just want to input/output/store strings, and generally use them as "whole units" (for table indexing etc), you may not need any special handling at all. In this case, you just treat these strings as binary blobs.
Due to utf8's clever design, some types of string manipulation can be done on strings containing utf8 and will yield the correct result without taking any special care.
For instance, you can append strings, split them apart before/after ascii characters, etc. As an example, if you have a string "開発.txt" and you search for "." in that string using string.find (string_var, "."), and then split it using the normal string.sub function into "開発" and ".txt", those result strings will be correct utf8 strings even though you're not using any kind of "unicode-aware" algorithm.
Similarly, you can do case-conversions on only the ASCII characters in strings (those with the high bit zero), and treat the rest of the strings as binary without screwing them up.
Some utf8-aware operations are so simple that it's easy to just write one's own functions to do them.
For instance, to calculate the length in unicode-characters of a string, just count the number of characters with the high bit zero (ASCII characters), and the number of characters with the top two bits 11 ("leading bytes" for non-ASCII characters); the length is the sum of those two.
For more complex operations—e.g., case-conversion on non-ASCII characters, etc.—you'll probably have to use a Lua unicode library, such as those on the (previously mentioned) Lua-users Unicode page

Lua does not have any support for unicode (other than accepting any byte value in strings). The library slnunicode has a lot of unicode string functions, however. For example unicode.utf8.len.
(note: this answer is completely stolen from grom's comment on another question - I just think it deserves its own answer)

If you want a short answer, it is 'yes and no' as put on the linked site.
Lua supports Unicode in the way that specifying, storing and querying arbitrary byte values in strings is supported, so you can store any kind of Unicode-encoding encoded string in a Lua string.
What is not supported is iteration by unicode character, there is no standard function for string length in unicode characters etc. So the higher-level kind of Unicode support (like what is available in Python with length, lower -> upper case conversion, encoding in arbitrary coding etc) is not available.

Lua 5.3 was released now. It comes with a basic UTF-8 library.
You can use the utf8 library to do things about UTF-8 encoding, like getting the length of a UTF-8 string (not number of bytes as string.len), matching each characters (not bytes), etc.
It doesn't provide native support other than encoding, like is this character a Chinese character?

It supports it in the sense that you can use Unicode in Lua strings. It depends specifically on what you're planning to do, but most of the limitations can be fairly easily worked around by extending Lua with your own functions.

Related

Why can't we store Unicode directly?

I read some article about Unicode and UTF-8.
The Unicode standard describes how characters are represented by code points. A code point is an integer value, usually denoted in base 16. In the standard, a code point is written using the notation U+12CA to mean the character with value 0x12ca (4,810 decimal). The Unicode standard contains a lot of tables listing characters and their corresponding code points:
Strictly, these definitions imply that it’s meaningless to say ‘this is character U+12CA‘. U+12CA is a code point, which represents some particular character; in this case, it represents the character ‘ETHIOPIC SYLLABLE WI’. In informal contexts, this distinction between code points and characters will sometimes be forgotten.
To summarize the previous section: a Unicode string is a sequence of code points, which are numbers from 0 through 0x10FFFF (1,114,111 decimal). This sequence needs to be represented as a set of bytes (meaning, values from 0 through 255) in memory. The rules for translating a Unicode string into a sequence of bytes are called an encoding.
I wonder why we have to encode U+12CA to UTF-8 or UTF-16 instead of saving the binary of 12CA in the disk directly. I think the reason is:
Unicode is not Self-synchronizing code, so if
10 represent A
110 represent B
10110 represent C
When I see 10110 in the disk we can't tell it's A and B or just C.
Unicode uses much more space instead of UTF-8 or UTF-16.
Am I right?
Read about Unicode, UTF-8 and the UTF-8 everywhere website.
There are more than a million Unicode code-points (you mentionned 1,114,111...). So you need at least 21 bits to be able to separate all of them (since 221 > 1114111).
So you can store Unicode characters directly, if you represent each of them by a wide enough integral type. In practice, that type would be some 32 bits integer (because it is not convenient to handle 3-bytes i.e. 24 bits integers). This is called UCS-4 and some systems or software do already handle their Unicode string in such a format.
Notice also that displaying Unicode strings is quite difficult, because of the variety of human languages (and also since Unicode has combining characters). Some need to be displayed right to left (Arabic, Hebrew, ....), others left to right (English, French, Spanish, German, Russian ...), and some top to down (Chinese, ...). A library displaying Unicode strings should be capable of displaying a string containing English, Chinese and Arabic words.... Then you see that decoding UTF-8 is the easy part of Unicode string displaying (and storing UCS-4 strings won't help much).
But, since English is the dominant language in IT technology (for economical reasons), it is very often cheaper to keep strings in UTF8 form. If most of the strings handled by your system are English (or in some other European language using the Latin alphabet), it is cheaper and it takes less space to keep them in UTF-8.
I guess than when China will become a dominant power in IT, things might change (or maybe not).
(I have no idea of the most common encoding used today on Chinese supercomputers or smartphones; I guess it is still UTF-8)
In practice, use a library (perhaps libunistring or Glib in C), to process UTF-8 strings and another one (e.g. pango and GTK in C) to display them. You'll find many Unicode related libraries in various programming languages.
I wonder why we have to encode U+12CA to UTF-8 or UTF-16 instead of saving the binary of 12CA in the disk directly.
How do you write 12CA to a disk directly? It is a bigger value than a byte can hold, so you need to write at least two bytes. Do you write 12 followed by CA? You just encoded it in UTF-16BE. That's what an encoding is...a definition of how to write an abstract number as bytes.
Other reading:
The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!)
Pragmatic Unicode
For good and specific reasons, Unicode doesn't specify any particular encoding. If it makes sense for your scenario, you can specify your own.
Because Unicode doesn't specify any serialization, there is no way to "directly" store Unicode, just like you can't "directly" store a mathematical number or a flow chart to implement a program you designed. The question isn't really well-defined.
There are a number of existing serialization formats (encodings) so it is very likely that it makes the most sense to use an existing one unless your requirements are significantly different than what any existing encoding provides; even then, is it really worth the cost?
A stream of bits is just a stream of bits. Conventionally, we chop them up into groups of 8 and call that a "byte" and the latter half of your question is really "if it's not a byte, how can you tell which bits belong to which symbol?" There are many ways to do that, but the common ones generally define a sequence of some particular length (8, 16, and 32 are often convenient for reasons of compatibility with bus width on modern computers etc) but again, if you really wanted to, you could come up with something different. Huffman trees come to mind as one way to implement a way to communicate a structure of variable length (and is used for precisely that in many compression algorithms).
Consider one situation, even if you can directly save unicode binary into disk and close the file, what happens when you open the file again? It's just a bunch of binary, you don't know how many bytes a char occupied right, which means, if '🥶'(U+129398) and 'A' are the content of your file, then if you take it 1 byte for a char, then '🥶' can't be decoded correctly, which takes 2 bytes, then instead 1 emoji you see, you get two, which is U+63862 and U+65536 unicode char.

When using UTF-8, is it better to reference character for international use using decimal or hex... and why?

When using UTF-8, which character reference is better, or more widely supported worldwide on various browsers... using decimal references or hex references?
UPDATE
For instance, for replacing quotation marks...
" or "
which one is better to use, and why?
All HTML entities use only the ASCII subset, so the fact that you encode your document in UTF-8, as opposed to any other byte oriented encoding which extends ASCII, is unrelated.
Anyway:
When using UTF-8, you can just copy and paste the relevant characters into the document, without references at all. E.g. StackOverflow does not convert this ⫅ to an entity (see the source of this page).
If you prefer using entities, then I would use the hex references purely since this is the way Unicode codepoints are usually written in the charts. References are so widely supported that I do not think that you will head a compatibility problem with neither hex nor decimal references.
There is no functional difference between decimal references and hexadecimal references. Old browsers did not support the latter, but then we are talking about really old browsers like Netscape 4 and IE 4.
Hexadecimal references are usually more handy, because in character code standards and other reference works, characters are referred to by their code numbers in hexadecimal. Using them, you avoid the conversion from hexadecimal to decimal (and thereby may avoid some mistakes).
There is no reason to use either " or " in text. (In attribute values, they, or ", are needed in rare cases.)
This does not depend on the document encoding (UTF-8 or something else), except in the sense that when using UTF-8, you do not need the references (except for the markup-significant characters < and &). UTF-8 lets you enter any character as such, though you might still use references if you find that more comfortable than finding an editor that lets you enter the characters themselves.

When to use Unicode (aside with non-unicode!)

I haven't found much (concise) info about when exactly to use Unicode. I understand that many say best practice is to always use Unicode. But Unicode strings DO have more memory footprint. Am I correct to say that Unicode must be used only when
Printing something to screen other than local (for example debugging) use.
Generally, sending any type of text across a network with the two ends being in different locales/country
When you're not sure which to use
I think it would be beneficial if someone explained the basics (concise) of what actually happens with Unicode... am I correct to say that things get messy when :
the physical (byte) string gets sent to a machine using a representation of strings (code page, others... this is already detail although interesting) different from the sender.
The context is using Unicode in a programming language (say C++), but I hope answers to this question can be used for any encoding situation.
Also, I'm aware Unicode and NLS are not the same thing, but is it correct to say that NLS implies usage of Unicode?
P.S. awesome site
Always use Unicode, it will save you and others a lot of pain.
What you may have confused is the issue of encoding. Unicode strings do not necessarily take more memory than the equivalent ASCII (or other encoding) strings, that depends a lot on the encoding used.
Sometimes "Unicode" is used as a synonym for "UCS-2" or "UTF-16". Strictly speaking that use is wrong, because "Unicode" is the standard that defines the set of characters and their unicode codepoints. It does not as such define a mapping to bytes (or words). UTF-16, UTF-8 and other encoding take over the job of mapping the characters to concrete bytes.
The beauty of Unicode is that it frees you from restrictions and lots of headaches. Unicode is the largest character set available to date, i.e. it enables you to actually encode and use virtually any character of any halfway mainstream language in use today. With any other character set you need to think about whether it can actually encode a character or not. Latin-1 cannot encode the character "あ", Shift-JIS cannot encode the character "ڥ" and so on. Only if you're very sure you will never ever need anything other than basic Latin/Arabic/Japanaese/whatever other subset of characters should you choose a specialized encoding such as Latin-1, BIG-5, Shift-JIS or ASCII.
Unicode is the most versatile charset available and therefore a good standard to adhere to.
The Unicode encodings are nothing special, they're just a little more complex in their bit representation since they have to encode many more characters while still trying to be space efficient. For a very detailed excursion into this topic, please see What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text.
I have a little utility which is sometimes helpful in seeing the difference between character encodings. http://sodved.awardspace.info/unicode.pl. If you paste in ö into the Raw (UTF-8) field you will see that it is represented by different byte sequences in different encodings. And as the other two good answers describe, some non-unicode encodings cannot represent it at all.

wxWidgets and Unicode

i want to use korean translations under in my - quite large - wxwidgets application. The application uses the wxwidgets translation framework, which is based on gettext.
I have working translations for french, german and russian. I want to go unicode anyway, but my first question is:
does my application need unicode support to display korean and japanese languages?
If so, - just for interest - why does russian work without, since they have a cyrillic letterset?
I have thousands of string literals. Do i have to prepend each and every one of them with 'L' ? ( wxString foo("foo") --> wxString foo(L"foo") )
if so, did someone build a regex or sed or perl script to do this in ca. 500 .cpp files ? ( pleeze! =) )
Will this change in wxWidgets 3.0?
Unicode question general: i use these string literals in many descriptive and many technical ways .. as displayed text as well as parts of GLSL shaders as well as XML. These APIs have char* / const char* as function arguments, so my internal wxString representation should not matter in these areas. Theory and practice: is this true? Some experiences to share, anyone?
I do some text processing ( comparing, string finding etc ) - are there any logical differences in unicode vs. ansi?
Is there any remarkeable performance impact in using Unicode?
Thank you!
Wendy
Addressing some of your questions…
does my application need unicode support to display korean and japanese languages?
If so, - just for interest - why does russian work without, since they have a cyrillic letterset?
Russian fits in a single-byte charset, just like western European languages (though it is a different charset). Korean and Japanese (and Chinese) don't. There are many workarounds for this, but the most elegant I know of to date is to use Unicode so that you don't need to rebuild your application for each locale; just change its message catalog.
Unicode question general: i use these string literals in many descriptive and many technical ways .. as displayed text as well as parts of GLSL shaders as well as XML. These APIs have char* / const char* as function arguments, so my internal wxString representation should not matter in these areas. Theory and practice: is this true? Some experiences to share, anyone?
Only strings that are going to be shown to (non-technical) users need to be localized, so they're the only ones that have to be in Unicode. The most common approach is to use UTF-8 (which is a particular way of encoding Unicode) as that means that ASCII strings – the most common type passed around inside programs – are exactly the same, which simplifies things a lot. The down-side is that you no longer have cheap indexing into the string as not all characters are the same number of bytes long. That can be anything from a non-issue to a right royal hindering PITA, depending on what the program is doing.
I do some text processing ( comparing, string finding etc ) - are there any logical differences in unicode vs. ansi?
Comparisons work fine, as does simple string finding. Other operations (e.g., getting the 20th character of a string, or working out how many characters into a string you've found a substring) are nasty because you've not got constant character widths. The nastiness can be mitigated by using wide characters, but they're less nice to use for external data (they introduce potential problems with endianness unless you go into working with byte-order marks, and that's another matter right there).
Is there any remarkeable performance impact in using Unicode?
Depends on exactly what you do. With UTF-8, if you're mostly dealing with ASCII text in reality then you get very little in the way of performance problems for most operations. With wide characters, you take more memory for every character, which naturally has performance implications (but which might acceptable because it does mean you've got constant-time indexing).
There's a korean .po file on http://www.wxwidgets.org/about/i18n.php for wxWidget's own strings. If your application displays wxWidget's own strings correctly when using that file, then it does not need Unicode support to display Korean and Japanese languages.
ISO-8859-5 is an 8 bit character set with Cyrillic letters.
Only if 1. does not yield the correct result. But if you want to translate the string, you should have used _().
I don't know.
wxWidgets 3.0 will not have separate Unicode- and ANSI-builds. 2.9.1 doesn't have, either.
It depends on how you use the arguments. C- and C++-functions usually operate on the representation of strings and are unaware of any particular character encoding. Particularly what you perceive to be a character and what the program considers a character might be different things.
See 6.
I do not know, but many toolkits use UTF-16 or UTF-32 instead of UTF-8 because these schemes are simpler. It's a size-speed tradeoff.
1.does my application need unicode support to display korean and japanese
languages?
Thanks to Oswald, i found out that you can have a korean translation without using unicode in your wxwidgets application. Change ( under windows, at least ) settings for non-unicode aware programs. But i still have to check out if this is enough for a whole application.
3.I have thousands of string literals. Do i have to prepend each
and every one of them with 'L' ? (
wxString foo("foo") --> wxString
foo(L"foo") )
If you have to use unicode with wxwidgets prior to 3.0, you have to. But do not use 'L' under wxwidgets, use wxT("foo")
4.if so, did someone build a regex or sed or perl script to do this in ca. 500 .cpp files ?
I did, at least a search and replace under Visual Studio:
Search: {"([^"]*)"}
Replace: wxT(\1)
But be careful! Will replace all string literals, #include "file.h" with #include wxT("file.h")
Will this change in wxWidgets 3.0?
Yes. See answer/quote above.

Can I get a single canonical UTF-8 string from a Unicode string?

I have a twelve-year-old Windows program. As may be obvious to the knowledgeable, it was designed for ASCII characters, not Unicode. Most of it has been converted, but there's one spot that still needs to be changed over. There is a serious constraint on it though: the exact same ASCII byte sequence MUST be created by different encoders, some of which will be operating on non-Windows systems.
I'm trying to determine whether UTF-8 will do the trick or not. I've heard in passing that different UTF-8 sequences can come up with the same Unicode string, which would be a problem here.
So the question is: given a Unicode string, can I expect a single canonical UTF-8 sequence to be generated by any standards-conforming implementation of a converter? Or are there multiple possibilities?
Any given Unicode string will have only one representation in UTF-8.
I think the confusion here is that there are multiple ways in Unicode to get the same visual output for some languages. Not to mention that Unicode has several characters that have no visual representation.
But this has nothing to do with UTF-8, its a property of Unicode itself. The encoding of a given Unicode as UTF-8 is a purely mechanical process, and it's perfectly reversible.
The conversion rules are here:
http://en.wikipedia.org/wiki/UTF-8
As John already said, there is only one standards-conforming UTF-8 representation.
But the tricky point is "standards-conforming".
Older encoders are usually unable to properly convert UTF-16 because of surrogates.
Java is one notable case of those non-conforming converters (it will produce two 3-bytes sequences instead of one 4-byte sequence).
MySQL had problems until recently, and I am not sure about the current status.
Now, you will only have problems with code points that need surrogates, meaning above U+FFFF. If you application survived without Unicode for a long time, it means you never needed to move such "esoteric" characters :-)
But it is good to get things right from the get go.
Try using standards-conforming encoders and you will be fine.