Shared Model on Mac and iPhone - iphone

I'm currently looking into unifying the model of my application. At the moment I'm using a different model on the mac/iphone. Missing classes (NSAttributedString) and missing technologies (Bindings) made me go with this decision.
With the first restriction gone in SDK 3.2 and my plan to also create an optimized iPad version I'm reconsidering my decision. As I also need to store NSPoints/CGPoints, NSRect/CGRects, NSColor/UIColor and NSImage/UIImage structs/objects in my model I'm not sure what the best way to handle them would be.
Writing my own MNColor object that encapsulates NSColor and UIColor depending on architecture?
Writing my own rect-functions that call the appropriate function depending on arch? Or use CGRect in the model on the mac?
Any input would be very appreciated!

CorePlot is an excellent Cocoa plotting framework for iPhone and Mac OS X.
It shares common code across both platforms - Maybe you can get some ideas by browsing their source.
For some cross-plattform issues, CP uses platform specific defines in separate header files to get an "agnostic" image class.
The Xcode project for each platform includes one of the according headers:
MacOnly/CPPlatformSpecificDefines.h
iPhoneOnly/CPPlatformSpecificDefines.h
They also have a custom color class CPColor. (Based on CGColorRef)
For NSPoint and NSRect, I would use the Core Graphics structs in the model and convert them using NSRectFromCGRect and NSPointFromCGPoint where needed. (Mac OS 10.5+)
A recent CIMGF article also deals with iPhone/Mac incompatibilities:
Creating a NSManagedObject that is Cross Platform

I might be misunderstanding your setup and question but it sounds like you have a insufficiently abstracted data model.
Strictly speaking, "NSPoints/CGPoints, NSRect/CGRects, NSColor/UIColor and NSImage/UIImage structs/objects" are all implementation/UI elements that have nothing to do with the data model. Granted, the API makes it easy to archive these but this lures you into the problem you have now. You're saving objects/structs that are attached to specific hardware and specific implementations and now you can port/reuse them easily.
The better way is to create an abstracted data model that knows nothing about the hardware or the rest of the API. It should store all the NSPoints/CGPoints, NSRect/CGRects as strings or numbers. It should store the colors as numbers, strings or raw data. The images should be stored as raw data.
This way the core of your application i.e. the data it actual manipulates is generic. To display the information, you just need your controller to request the raw data and let the controller convert it the hardware/API specific struct/object.
Core data provides a good example of an abstracted data model. It only stores strings, numbers, dates, booleans etc yet it can store any information of arbitrary complexity for any platform that supports core data.
Even if you don't use Core Data, that is the type of data model you should shoot for.

#"Writing my own rect-functions that call the appropriate function depending on arch" -
This will be good.
#"Writing my own MNColor object that encapsulates NSColor and UIColor" -
Will be good provided your design of wrapper class is capable of handling MNColor object in cross-platform situations. i.e. The database from mac if imported to iPhone should now be capable of somehow providing UIColor object through your wrapper instead of NSColor.

It depends on your usage but I discourage storing images in a database. They're better off on the filesystem with (perhaps) the paths to the images being stored in the database.
The one case where I can see any gains by having the images stored in the database is if you want one filesystem unit that you can move around that moves everything around. Though with the iPhone this isn't a likely use-case.

Related

What is currently the best way to add a custom dictionary to a neural machine translator that uses the transformer architecture?

It's common to add a custom dictionary to a machine translator to ensure that terminology from a specific domain is correctly translated. For example, the term server should be translated differently when the document is about data centers, vs when the document is about restaurants.
With a transformer model, this is not very obvious to do, since words are not aligned 1:1. I've seen a couple of papers on this topic, but I'm not sure which would be the best one to use. What are the best practices for this problem?
I am afraid you cannot easily do that. You cannot easily add new words to the vocabulary because you don't know what embedding it would get during training. You can try to remove some words, or alternatively you can manually change the bias in the final softmax layer to prevent some words from appearing in the translation. Anything else would be pretty difficult to do.
What you want to do is called domain adaptation. To get an idea of how domain adaptation is usually done, you can have a look at a survey paper.
The most commonly used approaches are probably model finetuning or ensembling with a language model. If you want to have parallel data in your domain, you can try to fine-tune your model on that parallel data (with simple SGD, small learning rate).
If you only have monolingual data in the target language, you train a language model on that data. During the decoding, you can mix the probabilities from the domain-specific language and the translation model. Unfortunately, I don't know of any tool that could do this out of the box.

OPC UA and data representation

Hi I am investigating OPC UA for my organization. I am trying to work out an example for a presentation based on an information or data example.
I have one for a on demand read operation and one for a continuous monitor. What I don't quite understand since I am just learning and haven't picked a vendor yet (lean towards United Auto) is how is the data represented?
For example if I have a data struct or object called machineInfo with 13 attributes (data) how would I create that on the server side and show how its done?
How would it fit in the BaseNode, Variable hierarchy? Or am I way off?
I can show high level or just code.
Thanks
MachineInfo would be an Object node (NodeClass of Object), with HasComponent references to each of the 13 attributes, which themselves would be Variable nodes (NodeClass of Variable).
As far as type definitions go, you could start out with just using the BaseObjectType and BaseDataVariableTypes, but if you're going to be using a client capable of taking advantage of more complex types you could create a custom ObjectType for the object. The variable components could be further exposed as AnalogItemType or DiscreteItemType, if applicable...
What programming language/SDK are you leaning towards?

Obj-C, how should I use NSUserDefaults to access settings through-out my app / views, easily / efficiently?

I've been using app delegate interface variables through-out my app to quickly access app wide bits of data.
I believe this is causing efficiency issues in my app. And I've finally decided to move to NSUserDefaults. Unless you suggest some other way ?
Often I will want to access the same variable through-out a view, so it doesn't make sense to access this variable using NSUserDefaults each time. I figure it will be slow.
So I'm thinking a class which will read all the values into an array of some kind, in viewDidLoad and then if a value is altered, save / synchronize and update the class variable.
But if I push to a view, I guess I'm going to have to save then too.
This is beginning to sound a bit messy.
However, I'm just wondering what approach will be efficient and easy to use ?
A shared Model object (using the MVC paradigm) is the usual recommended way to share variables to multiple other objects or classes. This Model object can be a singleton, or other objects can locally copy or be delegated a reference to a single Model object for fast access to its getters/setters.
The fastest variables access method is often just using C global variables (since regular C is a subset of Objective C), if you are willing to deal with potentially more difficult code reuse and debugging problems.
NSUserDefaults is just using the file system as a key-value dictionary global variable. Slow, and with the many of same structure problems as C global variable use.
It really depends on the size of data you're accessing. The serialization of several NSDictionary objects to disk may be enough to cause your app to lag.
If you're serious about iOS development, you should learn to use Core Data. Anything NSUserDefaults can do, Core Data does better. The only one advantage NSUserDefaults provides reduces lines of code in tiny one-off apps. Think of Core Data like laying the foundations for a house, and NSUserDefaults like pitching up a tent.
If you need to use variables like arrays or sets you'd better not use NSUserDefaults since on synchronize they save all stored values onto disk (of course if you don't need storing them to disk). If you need to store large amounts of data in object graphs with relations like this
User
-name
-lastname
-email
-messages
Message
-date
-text
Then you'd better start looking into CoreData framework, it's very easy to use and allows to store large data sets to disk and access them quickly.
If you just need some class that would, for instance, store current user profile values like username, email etc. Try creating a singleton class - which is quite the same as using AppDelegate, but it's much clearer to use when you're separating your data into smaller chunks.
Anyways I wrote this answer based on my assumptions only. It would be nice to know what data kinds you are working with and what is its lifecycle in your app.

Are Operational Transformation Frameworks only meant for text?

Looking at all the examples of Operational Transformation Frameworks out there, they all seem to resolve around the transformation of changes to plain text documents. How would an OT framework be used for more complex objects?
I'm wanting to dev a real-time sticky notes style app, where people can co-create sticky notes, change their positon and text value. Would I be right in assuming that the position values wouldn't be transformed? (I mean, how would they, you can't merge them right?). However, I would want to use an OT framework to resolve conflicts with the posit-its value, correct?
I do not see any problem to use Operational Transformation to work with Complex Objects, what you need is to define what operations your OT system support and how concurrency is solved for them
For instance, if you receive two Sticky notes "coordinates move operation" from two different users from same 'client state', you need to make both states to converge, probably cancelling out second operation.
This is exactly the same behaviour with text when two users generate two updates to delete a text range that overlaps completely, (or maybe partially), the second update processed must be transformed against the previous and the resultant operation will only effectively delete a portion of the original one, (or completely cancelled with a 'no-op')
You can take a look on this nice explanation about how Google Wave Operational Transformation works and guess from this point how it should work your own implementation
See the following paper for an approach to using OT with trees if you want to go down that route:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.74
However, in your particular case, I would use a separate plain text OT document for each stickynote and use an existing library, eg: etherPad, to do the heavy lifting. The positions of the notes could then be broadcast on a last-committer-wins basis.
Operation Transformation is a general technique, it works for any data type. The point is you need to define your transformation functions. Also, there are some atomic attributes that you cannot merge automatically like (position and background color) those will be mostly "last-update wins" or the user solves them manually when there is a conflict.
there are some nice libs and frameworks that provide OT for complex data already out there:
ShareJS : library for Node which provides all operations on JSON objects
DerbyJS: framework for NodeJS, it uses ShareJS for OT stuff.
Open Coweb framework : Dojo foundation project for cooperative web applications using OT

Cocoa app layout with Core Data and lots of business logic

For those who have seen my other questions: I am making progress but I haven't yet wrapped my head around this aspect. I've been pouring over stackoverflow answers and sites like Cocoa With Love but I haven't found an app layout that fits (why such a lack of scientific or business app examples? recipe and book examples are too simplistic).
I have a data analysis app that is laid out like this:
Communication Manager (singleton, manages the hardware)
DataController (tells Comm.mgr what to do, and checks raw data it receives)
Model (receives data from datacontroller, cleans, analyzes and stores it)
MainViewController (skeleton right now, listens to comm.mgr to present views and alerts)
Now, never will my data be directly shown on a view (like a simple table of entities and attributes), I'll probably use core plot to plot the analyzed results (once I figure that out). The raw data saved will be huge (10,000's of points), and I am using a c++ vector wrapped in an ObjC++ class to access it. The vector class also has the encodeWithCoder and initWithCoder functions which use NSData as a transport for the vector. I'm trying to follow proper design practices, but I'm lost on how to get persistent storage into my app (which will be needed to store and review old data sets).
I've read several sources that say the "business logic" should go into the model class. This is how I have it right now, I send it the raw data, and it parses, cleans and analyzes the results and then saves those into ivar arrays (of the vector class). However, I haven't seen a Core Data example yet that has a Managed Object that is anything but a simple storage of very basic attributes (strings, dates) and they never have any business logic. So I wonder, how can I meld these two aspects? Should all of my analysis go into the data controller and have it manage the object context? If so, where is my model? (seems to break the MVC architecture if my data is stored in my controller - read: since these are vector arrays, I can't be constantly encoding and decoding them into NSData streams, they need a place to exist before I save them to disk with Core Data, and they need a place to exist after I retrieve them from storage and decode them for review).
Any suggestions would be helpful (even on the layout I've already started). I just drew some of the communication between objects to give you an idea. Also, I don't have any of the connections between the model and view/view controllers yet (using NSLog for now).
While vector<> is great for handling your data that you are sampling (because of its support for dynamically resizing underlying storage), you may find that straight C arrays are sufficient (even better) for data that is already stored. This does add a level of complexity but it avoids a copy for data arrays that are already of a known and static size.
NSData's -bytes returns a pointer to the raw data within an NSData object. Core Data supports NSData as one its attribute types. If you know the size of each item in data, then you can use -length to calculate the number of elements, etc.
On the sampling side, I would suggest using vector<> as you collect data and, intermittently, copy data to an NSData attribute and save. Note: I ran into a bit of problem with this approach (Truncated Core Data NSData objects) that I attribute to Core Data not recognizing changes made to NSData attribute when it is backed by an NSMutableData object and that mutable object's data is changed.
As for MVC question. I would suggest that data (model) is managed in by Model. Views and Controllers can ask Model for data (or subsets of data) in order to display. But ownership of data is with the Model. In my case, which may be similar to yours, there were times when the Model returns abridged data sets (using Douglas-Peucker algorithm). The views and controllers were none the wiser that points were being dropped - even though their requests to the Model may have played in a role in that (graph scaling factors, etc.).
Update
Here is a snippet of code from my Data class which extends NSManagedObject. For a filesystem solution, NSFileHandle's -writeData: and methods for monitoring file offset might allow similar (better) management controls.
// Exposed interface for adding data point to stored data
- (void) addDatum:(double_t)datum
{
[self addToCache:datum];
}
- (void) addToCache:(double_t)datum
{
if (cache == nil)
{
// This is temporary. Ideally, cache is separate from main store, but
// is appended to main store periodically - and then cleared for reuse.
cache = [NSMutableData dataWithData:[self dataSet]];
[cache retain];
}
[cache appendBytes:&datum length:sizeof(double_t)];
// Periodic copying of cache to dataSet could happen here...
}
// Called at end of sampling.
- (void) wrapup
{
[self setDataSet:[NSData dataWithData:cache]]; // force a copy to alert Core Data of change
[cache release];
cache = nil;
}
I think you may be reading into Core Data a bit too much. I'm not that experienced with it, so I speak as a non-expert, but there are basically two categories of data storage systems.
First is the basic database, like SQLite, PostgreSQL, or any number of solutions. These are meant to store data and retrieve it; there's no logic so you have to figure out how to manage the tables, etc. It's a bit tricky at times but they're very efficient. They're best at managing lots of data in raw form; if you want objects with that data you have to create and manage them yourself.
Then you have something like Core Data, which shouldn't be considered a database as much as an "object persistence" framework. With Core Data, you create objects, store them, and then retrieve them as objects. It's great for applications where you have large numbers of objects that each contain several pieces of data and relationships with other objects.
From my limited knowledge of your situation, I would venture a guess that a true database may be better suited to your needs, but you'll have to make the decision there (like I said, I don't know much about your situation).
As for MVC, my view is that the view should only contain display code, the model should only contain code for managing the data itself and its storage, and the controller should contain the logic that processes the data. In your case it sounds like you're gathering raw data and processing it before storing it, in which case you'd want to have another object to process the data before storing it in the model, then a separate controller to sort, manage, and otherwise prepare the data before the view receives it. Again, this may not be the best explanation (or the best methods for your situation) so take it with a grain of salt.
EDIT: Also, if you're looking on getting into Core Data more, I like this book. It explains the whole object-persistence-vs-database concept a lot better than I can.