How do I make matlab legends match the colour of the graphs? - matlab

Here is the code I used:
x = linspace(0,2);
e = exp(1);
lin = e;
quad = e-e.*x.*x/2;
cub = e-e.*x.*x/2;
quart = e-e.*x.*x/2+e.*x.*x.*x.*x/24;
act = e.^cos(x);
mplot = plot(x,act,x,lin,x,quad,x,cub,x,quart);
legend('actual','linear','quadratic','cubic','quartic')
This produces a legend matching the right colors to actual and linear, then after that it seems to skip over red on the graph, but not on the legend, i.e. the legend says quadratic should be red, but the graph shows it as green, the legend says cubic should be green, but the graph shows it as purple etc.
Any help is appreciated.

The lin curve needs to be fixed --- now you just have a bunch of points instead of a line. quad and cub need to be fixed as well (see below).
x = linspace(0,2);
e = exp(1);
lin = ones(size(x))*e; %#Now it's a vector with the same size as x
quad = e-e.*x.*x/2;
cub = e-e.*x.*x/2;
quart = e-e.*x.*x/2+e.*x.*x.*x.*x/24;
act = e.^cos(x);
mplot = plot(x,act,x,lin,x,quad,x,cub,x,quart);
legend('actual','linear','quadratic','cubic','quartic')
Are quad and cub meant to be the same? Maybe it should be:
quad = e-e.*x.*x/2;
cub = e-e.*x.*x.*x/2;

Related

Why can't I colour my segmented region from the original image

I have the following code:
close all;
star = imread('/Users/name/Desktop/folder/pics/OnTheBeach.png');
blrtype = fspecial('average',[3 3]);
blurred = imfilter(star, blrtype);
[rows,cols,planes] = size(star);
R = star(:,:,1); G = star(:,:,2); B = star(:,:,3);
starS = zeros(rows,cols);
ind = find(R > 190 & R < 240 & G > 100 & G < 170 & B > 20 & B < 160);
starS(ind) = 1;
K = imfill(starS,'holes');
stats = regionprops(logical(K), 'Area', 'Solidity');
ind = ([stats.Area] > 250 & [stats.Solidity] > 0.1);
L = bwlabel(K);
result = ismember(L,find(ind));
Up to this point I load an image, blur to filter out some noise, do colour segmentation to find the specific objects which fall in that range, then create a binary image that has value 1 for the object's colour, and 0 for all other stuff. Finally I do region filtering to remove any clutter that was left in the image so I'm only left with the objects I'm looking for.
Now I want to recolour the original image based on the segmentation mask to change the colour of the starfish. I want to create Red,Green,Blue channels, assign value to them then lay the mask over the image. (To have red starfishes for example)
red = star;
red(starS) = starS(:,:,255);
green = star;
green(starS) = starS(:,:,0);
blue = star;
blue(starS) = star(:,:,0);
out = cat(3, red, green, blue);
imshow(out);
This gives me an error: Index exceeds matrix dimensions.
Error in Project4 (line 28)
red(starS) = starS(:,:,255);
What is wrong with my current approach?
Your code is kinda confusing... I don't understand whether the mask you want to use is starS or result since both look like 2d indexers. In your second code snippet you used starS, but the mask you posted in your question is result.
Anyway, no matter what your desired mask is, all you have to do is to use the imoverlay function. Here is a small example based on your code:
out = imoverlay(star,result,[1 0 0]);
imshow(out);
and here is the output:
If the opaque mask of imoverlay suggested by Tommaso is not what you're after, you can modify the RGB values of the input to cast a hue over the selected pixels without saturating them. It is only slightly more involved.
I = find(result);
gives you an index of the pixels in the 2D image. However, star is 3D. Those indices will point at the same pixels, but only at the first 2D slice. That is, if I points at pixel (x,y), it is equivalently pointing to pixel (x,y,1). That is the red component of the pixel. To index (x,y,2) and (x,y,2), the green and blue components, you need to increment I by numel(result) and 2*numel(result). That is, star(I) accesses the red component of the selected pixels, star(I+numel(result)) accesses the green component, and star(I+2*numel(result)) accesses the blue component.
Now that we can access these values, how do we modify their color?
This is what imoverlay does:
I = find(result);
out = star;
out(I) = 255; % red channel
I = I + numel(result);
out(I) = 0; % green channel
I = I + numel(result);
out(I) = 0; % blue channel
Instead, you can increase the brightness of the red proportionally, and decrease the green and blue. This will change the hue, increase saturation, and preserve the changes in intensity within the stars. I suggest the gamma function, because it will not cause strong saturation artefacts:
I = find(result);
out = double(star)/255;
out(I) = out(I).^0.5; % red channel
I = I + numel(result);
out(I) = out(I).^1.5; % green channel
I = I + numel(result);
out(I) = out(I).^1.5; % blue channel
imshow(out)
By increasing the 1.5 and decreasing the 0.5 you can make the effect stronger.

The ellipse is outlined, how to fill?

In this tutorial, an ellipse will be outlined. As you can see, a red border will be drawn around. Form such result, how can we fill such surrounded border with white, and the rest of the image as black?
Thanks.
A little Google search with the words fill and Matlab would tell you that there is a function called fill which performs what you want(check here).
In the example, putting it right after the call to plot gives something like the following. I put the whole code for the for-loop:
for k = 1:length(s)
xbar = s(k).Centroid(1);
ybar = s(k).Centroid(2);
a = s(k).MajorAxisLength/2;
b = s(k).MinorAxisLength/2;
theta = pi*s(k).Orientation/180;
R = [ cos(theta) sin(theta)
-sin(theta) cos(theta)];
xy = [a*cosphi; b*sinphi];
xy = R*xy;
x = xy(1,:) + xbar;
y = xy(2,:) + ybar;
plot(x,y,'r','LineWidth',2);
fill(x,y,rand(1,3)) %// Here is the important line.
end
I'll let you discover how you can fill the ellipses with white instead of random colors.

Matlab: given 4 points, fit the closest rhombus/square

I need a script that "checks" if 4 given points form a square or a rhombus.
I am working in a QR code segmentation script in which I try to locate the vertex by looking for the non-negative values of a binary image traversing it by rows and columns.
There are some cases in which checking is not neccessary, like in this image:
It is a bit hard to see, but the vertex are labelled as 4 points in green, magenta, cyan and yellow. In this case the script should return the same input points, since no modification is needed.
On the other hand, there are cases in which the vertex are labeled as so:
It can be seen that the magenta and cyan labels rely on the top right corner of the image. This is obviously not correct, but it fullfills the specified condition: traverse each row of the image until you find a row satisfying sum(row)>1 (greater than 1 to avoid single, noisy pixels).
How can I locate the misplaced vertex and place it using the remaining vertex coordinates?
EDIT
Solved the problem. I'm posting the code of the function in case someone needs it:
function correctedCorners = square(corners)
correctedCorners = corners;
X = corners(:,1);
Y = corners(:,2);
sortedX = sort(corners(:,1));
sortedY = sort(corners(:,2));
%% DISTANCES BW POINTS
for i=1:4
for j=1:4
distances(i,j) = sqrt((corners(i,1)-corners(j,1))^2+ (corners(i,2)-corners(j,2))^2);
end
end
%% relationship bw distances
% check corner 1
d11 = distances(1,1);%0
d12 = distances(1,2);%x
d13 = distances(1,3);%sqrt(2)*x
d14 = distances(1,4);%x
bool1 = [(d12*0.8<=d14)&(d12*1.2>=d14) (d12*0.8*sqrt(2)<=d13)& (d12*1.2*sqrt(2)>=d13) (d14*0.8<=d12)&(d14*1.2>=d12) (d14*0.8*sqrt(2)<=d13)&(d14*1.2*sqrt(2)>=d13)];
% check corner 2
d21 = distances(2,1);%x
d22 = distances(2,2);%0
d23 = distances(2,3);%x
d24 = distances(2,4);%sqrt(2)*x
bool2 = [(d21*0.8<=d23)&(d21*1.2>=d23) (d21*0.8*sqrt(2)<=d24)&(d21*1.2*sqrt(2)>=d24) (d23*0.8<=d21)&(d23*1.2>=d21) (d23*0.8*sqrt(2)<=d24)&(d23*1.2*sqrt(2)>=d24)];
% check corner 3
d31 = distances(3,1);%sqrt(2)*x
d32 = distances(3,2);%x
d33 = distances(3,3);%0
d34 = distances(3,4);%x
bool3 = [(d32*0.8<=d34)&(d32*1.2>=d34) (d32*0.8*sqrt(2)<=d31)&(d32*1.2*sqrt(2)>=d31) (d34*0.8<=d32)&(d34*1.2>=d32) (d34*0.8*sqrt(2)<=d31)&(d34*1.2*sqrt(2)>=d31)];
% check corner 4
d41 = distances(4,1);%x
d42 = distances(4,2);%sqrt(2)*x
d43 = distances(4,3);%x
d44 = distances(4,4);%0
bool4 = [(d41*0.8<=d43)&(d41*1.2>=d43) (d41*0.8*sqrt(2)<=d42)&(d41*1.2*sqrt(2)>=d42) (d43*0.8<=d41)&(d43*1.2>=d41) (d43*0.8*sqrt(2)<=d42)&(d43*1.2*sqrt(2)>=d42)];
bool = [bool1; bool2;bool3;bool4];
idx = 0;
for i=1:4
if (sum(bool(i,:))==0)
idx = [idx i];
end
end
if (length(idx)>=2)
for i=2:length(idx)
switch idx(i)
case 1
correctedCorners(1,:) = abs(corners(4,:)-(corners(3,:)-corners(2,:)));
case 2
correctedCorners(2,:) = abs(corners(3,:)-(corners(4,:)-corners(1,:)));
case 3
correctedCorners(3,:) = abs(corners(2,:)+(corners(1,:)-corners(1,:)));
case 4
correctedCorners(4,:) = abs(corners(1,:)+(corners(3,:)-corners(2,:)));
end
end
end
From basic geometry about squares:
TopLeft distance to BotLeft = x
TopLeft distance to TopRight= x
TopLeft distance to BotRight= sqrt(2)*x
Use the same logic for BotLeft to other points, etc.
Allow yourself something like 10-20% margin of error to declare an incorrect point. That is, if TopLeft distance to 2 points outside of the range (80%;120%)*x , and its distance to the third point is outside of the range (80%;120%)*sqrt(2)*x, you can declare the point as placed incorrectly.
In your case, the TopLeft point fails on all distance tests:
0 instead of x to TopRight (about 100% error)
sqrt(2)*x vs x to BotLeft (about 44% error)
x vs sqrt(2)*x to BotRight) (about 31% error)
As long as the rhombus is very similar to a square, a 20% margin of error while treating it as a square should still work.

Stretching an ellipse in an image to form a circle

I want to stretch an elliptical object in an image until it forms a circle. My program currently inputs an image with an elliptical object (eg. coin at an angle), thresholds and binarizes it, isolates the region of interest using edge-detect/bwboundaries(), and performs regionprops() to calculate major/minor axis lengths.
Essentially, I want to use the 'MajorAxisLength' as the diameter and stretch the object on the minor axis to form a circle. Any suggestions on how I should approach this would be greatly appreciated. I have appended some code for your perusal (unfortunately I don't have enough reputation to upload an image, the binarized image looks like a white ellipse on a black background).
EDIT: I'd also like to apply this technique to the gray-scale version of the image, to examine what the stretch looks like.
code snippet:
rgbImage = imread(fullFileName);
redChannel = rgbImage(:, :, 1);
binaryImage = redChannel < 90;
labeledImage = bwlabel(binaryImage);
area_measurements = regionprops(labeledImage,'Area');
allAreas = [area_measurements.Area];
biggestBlobIndex = find(allAreas == max(allAreas));
keeperBlobsImage = ismember(labeledImage, biggestBlobIndex);
measurements = regionprops(keeperBlobsImage,'Area','MajorAxisLength','MinorAxisLength')
You know the diameter of the circle and you know the center is the location where the major and minor axes intersect. Thus, just compute the radius r from the diameter, and for every pixel in your image, check to see if that pixel's Euclidean distance from the cirlce's center is less than r. If so, color the pixel white. Otherwise, leave it alone.
[M,N] = size(redChannel);
new_image = zeros(M,N);
for ii=1:M
for jj=1:N
if( sqrt((jj-center_x)^2 + (ii-center_y)^2) <= radius )
new_image(ii,jj) = 1.0;
end
end
end
This can probably be optimzed by using the meshgrid function combined with logical indices to avoid the loops.
I finally managed to figure out the transform required thanks to a lot of help on the matlab forums. I thought I'd post it here, in case anyone else needed it.
stats = regionprops(keeperBlobsImage, 'MajorAxisLength','MinorAxisLength','Centroid','Orientation');
alpha = pi/180 * stats(1).Orientation;
Q = [cos(alpha), -sin(alpha); sin(alpha), cos(alpha)];
x0 = stats(1).Centroid.';
a = stats(1).MajorAxisLength;
b = stats(1).MinorAxisLength;
S = diag([1, a/b]);
C = Q*S*Q';
d = (eye(2) - C)*x0;
tform = maketform('affine', [C d; 0 0 1]');
Im2 = imtransform(redChannel, tform);
subplot(2, 3, 5);
imshow(Im2);

Matlab fill shapes by white

As you see, I have shapes and their white boundaries. I want to fill the shapes in white color.
The input is:
I would like to get this output:
Can anybody help me please with this code? it doesn't change the black ellipses to white.
Thanks alot :]]
I = imread('untitled4.bmp');
Ibw = im2bw(I);
CC = bwconncomp(Ibw); %Ibw is my binary image
stats = regionprops(CC,'pixellist');
% pass all over the stats
for i=1:length(stats),
size = length(stats(i).PixelList);
% check only the relevant stats (the black ellipses)
if size >150 && size < 600
% fill the black pixel by white
x = round(mean(stats(i).PixelList(:,2)));
y = round(mean(stats(i).PixelList(:,1)));
Ibw = imfill(Ibw, [x, y]);
end;
end;
imshow(Ibw);
Your code can be improved and simplified as follows. First, negating Ibw and using BWCONNCOMP to find 4-connected components will give you indices for each black region. Second, sorting the connected regions by the number of pixels in them and choosing all but the largest two will give you indices for all the smaller circular regions. Finally, the linear indices of these smaller regions can be collected and used to fill in the regions with white. Here's the code (quite a bit shorter and not requiring any loops):
I = imread('untitled4.bmp');
Ibw = im2bw(I);
CC = bwconncomp(~Ibw, 4);
[~, sortIndex] = sort(cellfun('prodofsize', CC.PixelIdxList));
Ifilled = Ibw;
Ifilled(vertcat(CC.PixelIdxList{sortIndex(1:end-2)})) = true;
imshow(Ifilled);
And here's the resulting image:
If your images are all black&white, and you have the image processing toolkit, then this looks like what you need:
http://www.mathworks.co.uk/help/toolbox/images/ref/imfill.html
Something like:
imfill(image, [startX, startY])
where startX, startY is a pixel in the area that you want to fill.