NSArray vs. SQLite for Complex Queries on iPhone - iphone

Developing for iPhone, I have a collection of points that I need to make complex queries on. For example: "How many points have a y-coordinate of 10" and "Return all points with an X-coordinate between 3 and 5 and a y-coordinate of 7".
Currently, I am just cycling through each element of an NSArray and checking to see if each element matches my query. It's a pain to write the queries though. SQLite would be much nicer. I'm not sure which would be more efficient though since a SQLite database resides on disk and not in memory (to my understanding). Would SQLite be as efficient or more efficient here? Or is there a better way to do it other than these methods that I haven't thought of? I would need to perform the multiple queries with multiple sets of points thousands of times, so the best performance is important.

You can use SQLite as an in-memory database. Just initialise it with the filename ":memory:". SQLite will never perform as well as carefully hand-crafted data structures, due to the overheads of the SQL engine and the dynamic type system. But it might still yield very good results with the convenience and full generality of ad hoc SQL. You can even add indexes to in-memory databases to help with query performance.

If performance is your key criteria then you should be using an array of floats to represent your points rather than an NSArray as that is as fast as it is going to get.
If you really want to use sqlite, it can be configured to run as an in memory database, see here for the details.
If you really want to get down and dirty with performance you might look into using LLVM to dynamically generate machine code to iterate over your data set, but that is probably over kill ;)

I think Core Data and SQLite both implement caching, so that you get the ease of querying and the power of a relational database. Should be worth investigating.

Related

NoSQL & AdHoc Queries - Millions of Rows

I currently run a MySQL-powered website where users promote advertisements and gain revenue every time someone completes one. We log every time someone views an ad ("impression"), every time a user clicks an add ("click"), and every time someone completes an ad ("lead").
Since we get so much traffic, we have millions of records in each of these respective tables. We then have to query these tables to let users see how much they have earned, so we end up performing multiple queries on tables with millions and millions of rows multiple times in one request, hundreds of times concurrently.
We're looking to move away from MySQL and to a key-value store or something along those lines. We need something that will let us store all these millions of rows, query them in milliseconds, and MOST IMPORTANTLY, use adhoc queries where we can query any single column, so we could do things like:
FROM leads WHERE country = 'US' AND user_id = 501 (the NoSQL equivalent, obviously)
FROM clicks WHERE ad_id = 1952 AND user_id = 200 AND country = 'GB'
etc.
Does anyone have any good suggestions? I was considering MongoDB or CouchDB but I'm not sure if they can handle querying millions of records multiple times a second and the type of adhoc queries we need.
Thanks!
With those requirements, you are probably better off sticking with SQL and setting up replication/clustering if you are running into load issues. You can set up indexing on a document database so that those queries are possible, but you don't really gain anything over your current system.
NoSQL systems generally improve performance by leaving out some of the more complex features of relational systems. This means that they will only help if your scenario doesn't require those features. Running ad hoc queries on tabular data is exactly what SQL was designed for.
CouchDB's map/reduce is incremental which means it only processes a document once and stores the results.
Let's assume, for a moment, that CouchDB is the slowest database in the world. Your first query with millions of rows takes, maybe, 20 hours. That sounds terrible. However, your second query, your third query, your fourth query, and your hundredth query will take 50 milliseconds, perhaps 100 including HTTP and network latency.
You could say CouchDB fails the benchmarks but gets honors in the school of hard knocks.
I would not worry about performance, but rather if CouchDB can satisfy your ad-hoc query requirements. CouchDB wants to know what queries will occur, so it can do the hard work up-front before the query arrives. When the query does arrive, the answer is already prepared and out it goes!
All of your examples are possible with CouchDB. A so-called merge-join (lots of equality conditions) is no problem. However CouchDB cannot support multiple inequality queries simultaneously. You cannot ask CouchDB, in a single query, for users between age 18-40 who also clicked fewer than 10 times.
The nice thing about CouchDB's HTTP and Javascript interface is, it's easy to do a quick feasibility study. I suggest you try it out!
Most people would probably recommend MongoDB for a tracking/analytic system like this, for good reasons. You should read the „MongoDB for Real-Time Analytics” chapter from the „MongoDB Definitive Guide” book. Depending on the size of your data and scaling needs, you could get all the performance, schema-free storage and ad-hoc querying features. You will need to decide for yourself if issues with durability and unpredictability of the system are risky for you or not.
For a simpler tracking system, Redis would be a very good choice, offering rich functionality, blazing speed and real durability. To get a feel how such a system would be implemented in Redis, see this gist. The downside is, that you'd need to define all the „indices” by yourself, not gain them for „free”, as is the case with MongoDB. Nevertheless, there's no free lunch, and MongoDB indices are definitely not a free lunch.
I think you should have a look into how ElasticSearch would enable you:
Blazing speed
Schema-free storage
Sharding and distributed architecture
Powerful analytic primitives in the form of facets
Easy implementation of „sliding window”-type of data storage with index aliases
It is in heart a „fulltext search engine”, but don't get yourself confused by that. Read the „Data Visualization with ElasticSearch and Protovis“ article for real world use case of ElasticSearch as a data mining engine.
Have a look on these slides for real world use case for „sliding window” scenario.
There are many client libraries for ElasticSearch available, such as Tire for Ruby, so it's easy to get off the ground with a prototype quickly.
For the record (with all due respect to #jhs :), based on my experience, I cannot imagine an implementation where Couchdb is a feasible and useful option. It would be an awesome backup storage for your data, though.
If your working set can fit in the memory, and you index the right fields in the document, you'd be all set. Your ask is not something very typical and I am sure with proper hardware, right collection design (denormalize!) and indexing you should be good to go. Read up on Mongo querying, and use explain() to test the queries. Stay away from IN and NOT IN clauses that'd be my suggestion.
It really depends on your data sets. The number one rule to NoSQL design is to define your query scenarios first. Once you really understand how you want to query the data then you can look into the various NoSQL solutions out there. The default unit of distribution is key. Therefore you need to remember that you need to be able to split your data between your node machines effectively otherwise you will end up with a horizontally scalable system with all the work still being done on one node (albeit better queries depending on the case).
You also need to think back to CAP theorem, most NoSQL databases are eventually consistent (CP or AP) while traditional Relational DBMS are CA. This will impact the way you handle data and creation of certain things, for example key generation can be come trickery.
Also remember than in some systems such as HBase there is no indexing concept. All your indexes will need to be built by your application logic and any updates and deletes will need to be managed as such. With Mongo you can actually create indexes on fields and query them relatively quickly, there is also the possibility to integrate Solr with Mongo. You don’t just need to query by ID in Mongo like you do in HBase which is a column family (aka Google BigTable style database) where you essentially have nested key-value pairs.
So once again it comes to your data, what you want to store, how you plan to store it, and most importantly how you want to access it. The Lily project looks very promising. The work I am involved with we take a large amount of data from the web and we store it, analyse it, strip it down, parse it, analyse it, stream it, update it etc etc. We dont just use one system but many which are best suited to the job at hand. For this process we use different systems at different stages as it gives us fast access where we need it, provides the ability to stream and analyse data in real-time and importantly, keep track of everything as we go (as data loss in a prod system is a big deal) . I am using Hadoop, HBase, Hive, MongoDB, Solr, MySQL and even good old text files. Remember that to productionize a system using these technogies is a bit harder than installing MySQL on a server, some releases are not as stable and you really need to do your testing first. At the end of the day it really depends on the level of business resistance and the mission-critical nature of your system.
Another path that no one thus far has mentioned is NewSQL - i.e. Horizontally scalable RDBMSs... There are a few out there like MySQL cluster (i think) and VoltDB which may suit your cause.
Again it comes to understanding your data and the access patterns, NoSQL systems are also Non-Rel i.e. non-relational and are there for better suit to non-relational data sets. If your data is inherently relational and you need some SQL query features that really need to do things like Cartesian products (aka joins) then you may well be better of sticking with Oracle and investing some time in indexing, sharding and performance tuning.
My advice would be to actually play around with a few different systems. However for your use case I think a Column Family database may be the best solution, I think there are a few places which have implemented similar solutions to very similar problems (I think the NYTimes is using HBase to monitor user page clicks). Another great example is Facebook and like, they are using HBase for this. There is a really good article here which may help you along your way and further explain some points above. http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-analytics-system-hbase-to-process-20.html
Final point would be that NoSQL systems are not the be all and end all. Putting your data into a NoSQL database does not mean its going to perform any better than MySQL, Oracle or even text files... For example see this blog post: http://mysqldba.blogspot.com/2010/03/cassandra-is-my-nosql-solution-but.html
I'd have a look at;
MongoDB - Document - CP
CouchDB - Document - AP
Redis - In memory key-value (not column family) - CP
Cassandra - Column Family - Available & Partition Tolerant (AP)
HBase - Column Family - Consistent & Partition Tolerant (CP)
Hadoop/Hive - Also have a look at Hadoop streaming...
Hypertable - Another CF CP DB.
VoltDB - A really good looking product, a relation database that is distributed and might work for your case (may be an easier move). They also seem to provide enterprise support which may be more suited for a prod env (i.e. give business users a sense of security).
Any way thats my 2c. Playing around with the systems is really the only way your going to find out what really works for your case.

Performance issue - plist vs sqlite in iOS

I need to keep track of some variables and to save them very frequently. I don't need complex search and sort, just simple read/write.
What is the difference in read/write performance between plist and sqlite ?
Besides the above two methods, should I use core data ?
Please give me some hints.
Thanks.
In SQlite you can perform all functions related SQL like create,delete..and also store large amount of data.But in Plist its you jst store .
Plist and SQLite have different use as below..
PList is a file format used to store a small amount of structural data (less than a few hundred kilobytes), typically a dictionary. PList doesn't have sorting capabilities in and of itself, although code can easily be written to sort it.
A property list is probably the easiest to maintain, but it will be loaded into memory all at once. This could eat up a lot of the device's memory
SQLite is a full-fledged database. File sizes (on an iphone) are essentially unlimited. Sorting capabilities are built in. Querying and relational table designs are possible. Performance should be as good as any sorting algorithm you might come up with.
An sqlite database, on the other hand, will load only the data you request. I'm not sure how your data is structured, but you could quite easily create key-value pairs with a single database table. (A single table with a key column and a value column) Then, if it were me, I'd write an Objective-C class to wrap the database queries so I can write easy statements like:
NSString *welcomeText = [[MyData sharedData] dataWithKey:#"WelcomeText"];
Getting the data into the database in the first place doesn't have to be difficult. You can use the command line sqlite3 utility to bulk load your data. There's a command called .import that will import your data from a text file.
From the answer provided by #Robert Harvey in this previous SO question plist or sqlite
PList is a file format used to store a
small amount of structural data (less
than a few hundred kilobytes),
typically a dictionary. PList doesn't
have sorting capabilities in and of
itself, although code can easily be
written to sort it.A property list is
probably the easiest to maintain, but
it will be loaded into memory all at
once. This could eat up a lot of the
device's memory.
SQLite is a full-fledged database.
File sizes (on an iphone) are
essentially unlimited. Sorting
capabilities are built in. Querying
and relational table designs are
possible. Performance should be as
good as any sorting algorithm you
might come up with.An sqlite database,
on the other hand, will load only the
data you request. I'm not sure how
your data is structured, but you could
quite easily create key-value pairs
with a single database table.
If you are storing "huge data" then
you will benefit from sqlite.
Especially if you are going to be
performing complex queries,
extraction, searching and sorting
etc..
If you are going to do operations like search, sort you have to use sqlite. In sqlite we can able to store large amount of data but it is not possible in plist.I dont know about the performace between this.

Too much data duplication in mongodb?

I'm new to this whole NOSQL stuff and have recently been intrigued with mongoDB. I'm creating a new website from scratch and decided to go with MONGODB/NORM (for C#) as my only database. I've been reading up a lot about how to properly design your document model database and I think for the most part I have my design worked out pretty well. I'm about 6 months into my new site and I'm starting to see issues with data duplication/sync that I need to deal with over and over again. From what I read, this is expected in the document model, and for performance it makes sense. I.E. you stick embedded objects into your document so it's fast to read - no joins; but of course you can't always embed, so mongodb has this concept of a DbReference which is basically analogous to a foreign key in relational DBs.
So here's an example: I have Users and Events; both get their own document, Users attend events, Events have users attendees. I decided to embed a list of Events with limited data into the User objects. I embedded a list of Users also into the Event objects as their "attendees". The problem here is now I have to keep the Users in sync with the list of Users that is also embedded in the Event object. As I read it, this seems to be the preferred approach, and the NOSQL way to do things. Retrieval is fast, but the fall-back is when I update the main User document, I need to also go into the Event objects, possibly find all references to that user and update that as well.
So the question I have is, is this a pretty common problem people need to deal with? How much does this problem have to happen before you start saying "maybe the NOSQL strategy doesn't fit what I'm trying to do here"? When does the performance advantage of not having to do joins turn into a disadvantage because you're having a hard time keeping data in sync in embedded objects and doing multiple reads to the DB to do so?
Well that is the trade off with document stores. You can store in a normalized fashion like any standard RDMS, and you should strive for normalization as much as possible. It's only where its a performance hit that you should break normalization and flatten your data structures. The trade off is read efficiency vs update cost.
Mongo has really efficient indexes which can make normalizing easier like a traditional RDMS (most document stores do not give you this for free which is why Mongo is more of a hybrid instead of a pure document store). Using this, you can make a relation collection between users and events. It's analogous to a surrogate table in a tabular data store. Index the event and user fields and it should be pretty quick and will help you normalize your data better.
I like to plot the efficiency of flatting a structure vs keeping it normalized when it comes to the time it takes me to update a records data vs reading out what I need in a query. You can do it in terms of big O notation but you don't have to be that fancy. Just put some numbers down on paper based on a few use cases with different models for the data and get a good gut feeling about how much works is required.
Basically what I do is first try to predict the probability of how many updates a record will have vs. how often it's read. Then I try to predict what the cost of an update is vs. a read when it's both normalized or flattened (or maybe partially combination of the two I can conceive... lots of optimization options). I can then judge the savings of keeping it flat vs. the cost of building up the data from normalized sources. Once I plotted all the variables, if the savings of keeping it flat saves me a bunch, then I will keep it flat.
A few tips:
If you require fast lookups to be quick and atomic (perfectly up to date) you may want a favor a solution where you favor flattening over normalization and taking the hit on the update.
If you require update to be quick, and access immediately then favor normalization.
If you require fast lookups but don't require perfectly up to date data, consider building out your normalized data in batch jobs (using map/reduce possibly).
If your queries need to be fast, and updates are rare, and do not necessarily require your update to be accessible immediately or require transaction level locking that it went through 100% of the time (to guarantee your update was written to disk), you can consider writing your updates to a queue processing them in the background. (In this model, you will probably have to deal with conflict resolution and reconciliation later).
Profile different models. Build out a data query abstraction layer (like an ORM in a way) in your code so you can refactor your data store structure later.
There are lot of other ideas that you can employ. There a lot of great blogs on line that go into it like highscalabilty.org and make sure you understand CAP theorem.
Also consider a caching layer, like Redis or memcache. I will put one of those products in front my data layer. When I query mongo (which is storing everything normalized), I use the data to construct a flattened representation and store it in the cache. When I update the data, I will invalidate any data in the cache that references what I'm updating. (Although you have to take the time it takes to invalidate data and tracking data in the cache that is getting updated into consideration of your scaling factors). Someone once said "The two hardest things in Computer Science are naming things and cache invalidation."
Try adding an IList of type UserEvent property to your User object. You didn't specify much about how your domain model is designed. Check the NoRM group http://groups.google.com/group/norm-mongodb/topics
for examples.

What's the best way to store static data in an iOS app?

I have in my app a considerable amount of data that it needs to access, but will never be changed by the app. Currently I'm using this data in other applications in JSON files and SQL databases, but neither seems very straightforward to use in iOS.
I don't want to use CoreData, which provides tons of unnecessary functionality and complexity.
Would it be a good idea store the data in PropertyList file and build an accessor class? Are there any simple ways to incorporate SQLite without going the CoreData route?
You can only use plist if the amount of data is relatively small. Plist are entirely loaded into memory so you can only really use them if you can sustain all the objects created by the plist in memory at once for as long as you need them.
Core Data has a learning curve but in use it is usually less complex than SQL. In most cases the "simpler" SQL leads to more coding because you end up having to duplicate much of the functionality of Core Data to shoehorn the procedural SQL into the object-oriented API. You have to manually manage the memory use of all the data by tracking retention. You've write a lot of SQL code every time you want data. I've updated several apps from SQL to Core Data and in all cases the Core Data implementation was smaller and cleaner than the SQL.
Neither is the memory or processor "overhead" any larger. Core Data is highly optimized. In most cases, off the shelf Core Data is more efficient than hand tuned SQL. One minor sub optimization in SQL usually destroys any theoretical advantage it might have.
Of course, if you're already highly skilled at managing SQL in C then you personally might get the app to market more quickly by using SQL. However, if you're wondering what you should plan to use in general on on Apple Platforms, Core Data is almost always the answer and you should take the time to learn it.
You can just use SQLite directly without the overhead of Core Data using the SQLite C API.
Here is a tutorial I found on your use-case - simply loading some data from an SQLite database. Hope this helps.
Depending on the type of your data, the size and how often it changes, you may desire to just keep things simple and use a property list. Otherwise, using SQLite (documented in Jergason's answer) would be where I'd go. Though let me say that if you have a relatively small (less than a couple hundred) set of basic types (arrays, dictionaries, numbers, strings) that don't change frequently, then a property list will be a better choice in my opinion.
As an example to that, in one of my games, I create the levels from a single property list per difficulty. Since there are only a handful of levels per difficulty (99) and a small set of parameters for each (number of elements in play, their initial positions, mass, etc) then it makes sense, and I avoid having to deal with SQLite directly or worse yet, setting up and maintaining CoreData.
What do you mean by "best"? What kind of data?
If it's a bunch of objects, then JSON or (binary) plist aren't terrible formats, since you'll want the whole thing loaded in memory to walk the object graph. Compare space efficiency and loading performance to pick which one to use.
If it's a bunch of binary blobs, then store the blobs in a big file, memory-map the file (NSDataReadingMapped a.k.a. NSMappedRead), and use indexes into the blobs. iOS frameworks use a mixture of these (e.g. there are a lot of .pngs, but also "other.artwork" which just contains raw image data).
You can also use NSKeyedArchiver and friends if your classes implement the NSCoding protocol, but there's some object graph management overhead and the plist format it produces isn't exactly nice to work with.

Has anyone used an object database with a large amount of data?

Object databases like MongoDB and db4o are getting lots of publicity lately. Everyone that plays with them seems to love it. I'm guessing that they are dealing with about 640K of data in their sample apps.
Has anyone tried to use an object database with a large amount of data (say, 50GB or more)? Are you able to still execute complex queries against it (like from a search screen)? How does it compare to your usual relational database of choice?
I'm just curious. I want to take the object database plunge, but I need to know if it'll work on something more than a sample app.
Someone just went into production with a 12 terabytes of data in MongoDB. The largest I knew of before that was 1 TB. Lots of people are keeping really large amounts of data in Mongo.
It's important to remember that Mongo works a lot like a relational database: you need the right indexes to get good performance. You can use explain() on queries and contact the user list for help with this.
When I started db4o back in 2000 I didn't have huge databases in mind. The key goal was to store any complex object very simply with one line of code and to do that good and fast with low ressource consumption, so it can run embedded and on mobile devices.
Over time we had many users that used db4o for webapps and with quite large amounts of data, going close to todays maximum database file size of 256GB (with a configured block size of 127 bytes). So to answer your question: Yes, db4o will work with 50GB, but you shouldn't plan to use it for terabytes of data (unless you can nicely split your data over multiple db4o databases, the setup costs for a single database are negligible, you can just call #openFile() )
db4o was acquired by Versant in 2008, because it's capabilites (embedded, low ressource-consumption, lightweight) make it a great complimentary product to Versant's high-end object database VOD. VOD scales for huge amounts of data and it does so much better than relational databases. I think it will merely chuckle over 50GB.
MongoDB powers SourceForge, The New York Times, and several other large databases...
You should read the MongoDB use cases. People who are just playing with technology are often just looking at how does this work and are not at the point where they can understand the limitations. For the right sorts of datasets and access patterns 50GB is nothing for MongoDB running on the right hardware.
These non-relational systems look at the trade-offs which RDBMs made, and changed them a bit. Consistency is not as important as other things in some situations so these solutions let you trade that off for something else. The trade-off is still relatively minor ms or maybe secs in some situations.
It is worth reading about the CAP theorem too.
I was looking at moving the API I have for sure with the stack overflow iphone app I wrote a while back to MongoDB from where it currently sits in a MySQL database. In raw form the SO CC dump is in the multi-gigabyte range and the way I constructed the documents for MongoDB resulted in a 10G+ database. It is arguable that I didn't construct the documents well but I didn't want to spend a ton of time doing this.
One of the very first things you will run into if you start down this path is the lack of 32 bit support. Of course everything is moving to 64 bit now but just something to keep in mind. I don't think any of the major document databases support paging in 32 bit mode and that is understandable from a code complexity standpoint.
To test what I wanted to do I used a 64 bit instance EC2 node. The second thing I ran into is that even though this machine had 7G of memory when the physical memory was exhausted things went from fast to not so fast. I'm not sure I didn't have something set up incorrectly at this point because the non-support of 32 bit system killed what I wanted to use it for but I still wanted to see what it looked like. Loading the same data dump into MySQL takes about 2 minutes on a much less powerful box but the script I used to load the two database works differently so I can't make a good comparison. Running only a subset of the data into MongoDB was much faster as long as it resulted in a database that was less than 7G.
I think my take away from it was that large databases will work just fine but you may have to think about how the data is structured more than you would with a traditional database if you want to maintain the high performance. I see a lot of people using MongoDB for logging and I can imagine that a lot of those databases are massive but at the same time they may not be doing a lot of random access so that may mask what performance would look like for more traditional applications.
A recent resource that might be helpful is the visual guide to nosql systems. There are a decent number of choices outside of MongoDB. I have used Redis as well although not with as large of a database.
Here's some benchmarks on db4o:
http://www.db4o.com/about/productinformation/benchmarks/
I think it ultimately depends on a lot of factors, including the complexity of the data, but db4o seems to certainly hang with the best of them.
Perhaps worth a mention.
The European Space Agency's Planck mission is running on the Versant Object Database.
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=46951
It is a satelite with 74 onboard sensors launched last year which is mapping the infrarred spectrum of the universe and storing the information in a map segment model. It has been getting a ton of hype these days because of it's producing some of the coolest images ever seen of the universe.
Anyway, it has generated 25T of information stored in Versant and replicated across 3 continents. When the mission is complete next year, it will be a total of 50T
Probably also worth noting, object databases tend to be a lot smaller to hold the same information. It is because they are truly normalized, no data duplication for joins, no empty wasted column space and few indexes rather than 100's of them. You can find public information about testing ESA did to consider storage in multi-column relational database format -vs- using a proper object model and storing in the Versant object database. THey found they could save 75% disk space by using Versant.
Here is the implementation:
http://www.planck.fr/Piodoc/PIOlib_Overview_V1.0.pdf
Here they talk about 3T -vs- 12T found in the testing
http://newscenter.lbl.gov/feature-stories/2008/12/10/cosmic-data/
Also ... there are benchmarks which show Versant orders of magnitude faster on the analysis side of the mission.
CHeers,
-Robert