Gaussian smoothing in MATLAB - matlab

For an m x n array of elements with some noisy images, I want to perform Gaussian smoothing. How do I do that in MATLAB?
I've read the math involves smoothing everything with a kernel at a certain scale, but I have no idea how to do this in MATLAB.

Hopefully, you have the Image Processing toolbox. If so, then you can create a Gaussian filter with the fspecial function like so:
myfilter = fspecial('gaussian',[3 3], 0.5);
I have used the default values for hsize ([3 3]) and sigma (0.5) here, but you might want to play around with them. hsize is just the size of the filter, in this case it is a 3 x 3 matrix. Sigma is the sigma of the gaussian function (see the bottom of the fspecial function page).
Now you can use imfilter to filter your image:
myfilteredimage = imfilter(unfilteredimage, myfilter, 'replicate');
here I have simply passed in the unfilteredimage, the filter, and a parameter that says how the filter should handle the boundaries. In this case, I've chosen replicate which sets input array values outside the bounds of the array to the nearest array border value, but you can try some other values (or leaving off that option sets all outside of image values to 0).

Related

How to compute the mean value of all sub-imges in image I

I have a task that is compute the mean value of a sub-image that extract from input image I. Let explain my task. I have a image I (i.e, 9x9), and a window (i.e size 3x3). The window will be run from top-left to bottom-right of image. Hence, it will extract the input image into many subimage. I want to compute the mean value of these sub-images. Could you suggest to me some matlab code to compute it.
This is my solution. But it does not work.
First, I defined a window as Gaussian
Second, the Gaussian function will run from top-left to bottom-right using convolution function. (Note that, it must be use Gaussian Kernel)
Compute the mean value of each sub-window
%% Given Image I,Defined a Gaussian Kernel
sigma=3;
K=fspecial('gaussian',round(2*sigma)*2+1,sigma);
KI=conv2(I,K,'same');
%% mean value
mean(KI)
The problem in here is that mean value off all sub-image will have size similar image I. Because each pixel in image will made a sub-image. But my code returns only a value. What is problem?
If it is your desire to compute the average value in each sub-image once you filter your image with a Gaussian kernel, simply convolve your image with a mean or average filter. This will collect sub-images within your original image and for each output location, you will compute the average value.
Going with your initial assumption that the mask size is 3 x 3, simply use conv2 in conjunction with a 3 x 3 mask that has all 1/9 coefficients. In other words:
%// Your code
%% Given Image I,Defined a Gaussian Kernel
sigma=3;
K=fspecial('gaussian',round(2*sigma)*2+1,sigma);
KI=conv2(I,K,'same');
%// New code
mask = (1/9)*ones(3,3);
out = conv2(KI, mask, 'same');
Each location in out will give you what the average value was for each 3 x 3 sub-image in your Gaussian filtered result.
You can also create the averaging mask by using fspecial with the flag average and specifying the size / width of your mask. Given that you are already using it in your code, you already know of its existence. As such, you can also do:
mask = fspecial('average', 3);
The above code assumes the width and height of the mask are the same, and so it'll create a 3 x 3 mask of all 1/9 coefficients.
Aside
conv2 is designed for general 2D signals. If you are looking to filter an image, I recommend you use imfilter instead. You should have access to it, since fspecial is part of the Image Processing Toolbox, and so is imfilter. imfilter is known to be much more efficient than conv2, and also makes use of Intel Integrated Performance Primitives (Intel IPP) if available (basically if you are running MATLAB on a computer that has an Intel processor that supports IPP). Therefore, you should really perform your filtering this way:
%// Your code
%% Given Image I,Defined a Gaussian Kernel
sigma=3;
K=fspecial('gaussian',round(2*sigma)*2+1,sigma);
KI=imfilter(I,K,'replicate'); %// CHANGE
%// New code
mask = fspecial('average', 3);
out = imfilter(KI, mask, 'replicate'); %// CHANGE
The replicate flag is for handling the boundary conditions. When your mask goes out of bounds of the original image, replicate simply replicates the border of each side of your image so that the mask can fit comfortably within the image when performing your filtering.
Edit
Given your comment, you want to extract the subimages that are seen in KI. You can use the very powerful im2col function that's part of the Image Processing Toolbox. You call it like so:
B = im2col(A,[m n]);
A will be your input image, and B will be a matrix that is of size mn x L where L would be the total number of possible sub-images that exist in your image and m, n are the height and width of each sub-image respectively. How im2col works is that for each sub-image that exists in your image, it warps them so that it fits into a single column in B. Therefore, each column in B produces a single sub-image that is warped into a column. You can then use each column in B for your GMM modelling.
However, im2col only returns valid sub-images that don't go out of bounds. If you want to handle the edge and corner cases, you'll need to pad the image first. Use padarray to facilitate this padding. Therefore, to do what you're asking, we simply do:
Apad = padarray(KI, [1 1], 'replicate');
B = im2col(Apad, [3 3]);
The first line of code will pad the image so that you have a 1 pixel border that surrounds the image. This will allow you to extract 3 x 3 sub-images at the border locations. I use the replicate flag so that you can simply duplicate the border pixels. Next, we use im2col so that you get 3 x 3 sub-images that are then stored in B. As such, B will become a 9 x L matrix where each column gives you a 3 x 3 sub-image.
Be mindful that im2col warps these columns in column-major format. That means that for each sub-image that you have, it takes each column in the sub-image and stacks them on top of each other giving you a 9 x 1 column. You will have L total sub-images, and these are concatenated horizontally to produce a 9 x L matrix. Also, keep in mind that the sub-images are read top-to-bottom, then left-to-right as this is the nature of MATLAB operating in column-major order.

How do I create and apply a Gaussian filter in MATLAB without using fspecial, imfilter or conv2?

I have the following code in MATLAB:
I=imread(image);
h=fspecial('gaussian',si,sigma);
I=im2double(I);
I=imfilter(I,h,'conv');
figure,imagesc(I),impixelinfo,title('Original Image after Convolving with gaussian'),colormap('gray');
How can I define and apply a Gaussian filter to an image without imfilter, fspecial and conv2?
It's really unfortunate that you can't use the some of the built-in methods from the Image Processing Toolbox to help you do this task. However, we can still do what you're asking, though it will be a bit more difficult. I'm still going to use some functions from the IPT to help us do what you're asking. Also, I'm going to assume that your image is grayscale. I'll leave it to you if you want to do this for colour images.
Create Gaussian Mask
What you can do is create a grid of 2D spatial co-ordinates using meshgrid that is the same size as the Gaussian filter mask you are creating. I'm going to assume that N is odd to make my life easier. This will allow for the spatial co-ordinates to be symmetric all around the mask.
If you recall, the 2D Gaussian can be defined as:
The scaling factor in front of the exponential is primarily concerned with ensuring that the area underneath the Gaussian is 1. We will deal with this normalization in another way, where we generate the Gaussian coefficients without the scaling factor, then simply sum up all of the coefficients in the mask and divide every element by this sum to ensure a unit area.
Assuming that you want to create a N x N filter, and with a given standard deviation sigma, the code would look something like this, with h representing your Gaussian filter.
%// Generate horizontal and vertical co-ordinates, where
%// the origin is in the middle
ind = -floor(N/2) : floor(N/2);
[X Y] = meshgrid(ind, ind);
%// Create Gaussian Mask
h = exp(-(X.^2 + Y.^2) / (2*sigma*sigma));
%// Normalize so that total area (sum of all weights) is 1
h = h / sum(h(:));
If you check this with fspecial, for odd values of N, you'll see that the masks match.
Filter the image
The basics behind filtering an image is for each pixel in your input image, you take a pixel neighbourhood that surrounds this pixel that is the same size as your Gaussian mask. You perform an element-by-element multiplication with this pixel neighbourhood with the Gaussian mask and sum up all of the elements together. The resultant sum is what the output pixel would be at the corresponding spatial location in the output image. I'm going to use the im2col that will take pixel neighbourhoods and turn them into columns. im2col will take each of these columns and create a matrix where each column represents one pixel neighbourhood.
What we can do next is take our Gaussian mask and convert this into a column vector. Next, we would take this column vector, and replicate this for as many columns as we have from the result of im2col to create... let's call this a Gaussian matrix for a lack of a better term. With this Gaussian matrix, we will do an element-by-element multiplication with this matrix and with the output of im2col. Once we do this, we can sum over all of the rows for each column. The best way to do this element-by-element multiplication is through bsxfun, and I'll show you how to use it soon.
The result of this will be your filtered image, but it will be a single vector. You would need to reshape this vector back into matrix form with col2im to get our filtered image. However, a slight problem with this approach is that it doesn't filter pixels where the spatial mask extends beyond the dimensions of the image. As such, you'll actually need to pad the border of your image with zeroes so that we can properly do our filter. We can do this with padarray.
Therefore, our code will look something like this, going with your variables you have defined above:
N = 5; %// Define size of Gaussian mask
sigma = 2; %// Define sigma here
%// Generate Gaussian mask
ind = -floor(N/2) : floor(N/2);
[X Y] = meshgrid(ind, ind);
h = exp(-(X.^2 + Y.^2) / (2*sigma*sigma));
h = h / sum(h(:));
%// Convert filter into a column vector
h = h(:);
%// Filter our image
I = imread(image);
I = im2double(I);
I_pad = padarray(I, [floor(N/2) floor(N/2)]);
C = im2col(I_pad, [N N], 'sliding');
C_filter = sum(bsxfun(#times, C, h), 1);
out = col2im(C_filter, [N N], size(I_pad), 'sliding');
out contains the filtered image after applying a Gaussian filtering mask to your input image I. As an example, let's say N = 9, sigma = 4. Let's also use cameraman.tif that is an image that's part of the MATLAB system path. By using the above parameters, as well as the image, this is the input and output image we get:

Variable levels of smoothing within the same Matlab matrix

I currently have a large matrix M (~100x100x50 elements) containing both positive and negative values. At the moment, if I want to smooth this matrix, I use the smooth3 function to apply a gaussian kernel over the entire 3-D matrix.
What I want to achieve is a variable level of smoothing within this matrix - i.e.. different parts of the matrix M are smoothed to different levels of sigma depending of the value in a similar 3-D matrix, d (with values ranging from 0 to 1). Where d is 0, no smoothing occurs, where d is 1 a maximum level of smoothing occurs.
The fact that the matrix is 3-D is trivial. Smoothing in 3 dimensions is nice, but not essential, and my current code (performing various other manipulations) handles each of the 50 slices of M separately anyway. I am happy to replace smooth3 with a convolution of M with a gaussian function, and perform this convolution over each slice individually. What I can't figure out is how to vary the sigma level of this gaussian function (based on d) given its location in M and output the result accordingly.
An alternative approach may be to use matrix d as a mask for a very smooth version of matrix Ms and somehow manipulate M and Ms to give an equivalent result, however I'm not convinced that this will work as I can't think of a function to combine M and Md that won't give artefacts of each of M or Ms when 0 < d < 1...any thoughts?
[I'm using 2009b, and only have access to the Signal Processing toolbox.]
You should have a look at the Guided Image Filter. It is a computationally efficient generalization of the bilateral filter.
http://research.microsoft.com/en-us/um/people/jiansun/papers/guidedfilter_eccv10.pdf
It will allow you to do proper smoothing based on your guidance matrix.

Smoothing of histogram with a low-pass filter in MATLAB

I have an image and my aim is to binarize the image. I have filtered the image with a low pass Gaussian filter and have computed the intensity histogram of the image.
I now want to perform smoothing of the histogram so that I can obtain the threshold for binarization. I used a low pass filter but it did not work. This is the filter I used.
h = fspecial('gaussian', [8 8],2);
Can anyone help me with this? What is the process with respect to smoothing of a histogram?
imhist(Ig);
Thanks a lot for all your help.
I've been working on a very similar problem recently, trying to compute a threshold in order to exclude noisy background pixels from MRI data prior to performing other computations on the images. What I did was fit a spline to the histogram to smooth it while maintaining an accurate fit of the shape. I used the splinefit package from the file exchange to perform the fitting. I computed a histogram for a stack of images treated together, but it should work similarly for an individual image. I also happened to use a logarithmic transformation of my histogram data, but that may or may not be a useful step for your application.
[my_histogram, xvals] = hist(reshape(image_volume), 1, []), number_of_bins);
my_log_hist = log(my_histogram);
my_log_hist(~isfinite(my_log_hist)) = 0; % Get rid of NaN values that arise from empty bins (log of zero = NaN)
figure(1), plot(xvals, my_log_hist, 'b');
hold on
breaks = linspace(0, max_pixel_intensity, numberofbreaks);
xx = linspace(0, max_pixel_intensity, max_pixel_intensity+1);
pp = splinefit(xvals, my_log_hist, breaks, 'r');
plot(xx, ppval(pp, xx), 'r');
Note that the spline is differentiable and you can use ppdiff to get the derivative, which is useful for finding maxima and minima to help pick an appropriate threshold. The numberofbreaks is set to a relatively low number so that the spline will smooth the histogram. I used linspace in the example to pick the breaks, but if you know that some portion of the histogram exhibits much greater curvature than elsewhere, you'd want to have more breaks in that region and less elsewhere in order to accurately capture the shape of the histogram.
To smooth the histogram you need to use a 1-D filter. This is easily done using the filter function. Here is an example:
I = imread('pout.tif');
h = imhist(I);
smooth_h = filter(normpdf(-4:4, 0,1),1,h);
Of course you can use any smoothing function you choose. The mean would simply be ones(1,8).
Since your goal here is just to find the threshold to binarize an image you could just use the graythresh function which uses Otsu's method.

Gaussian filter in MATLAB

Does the 'gaussian' filter in MATLAB convolve the image with the Gaussian kernel? Also, how do you choose the parameters hsize (size of filter) and sigma? What do you base it on?
You first create the filter with fspecial and then convolve the image with the filter using imfilter (which works on multidimensional images as in the example).
You specify sigma and hsize in fspecial.
Code:
%%# Read an image
I = imread('peppers.png');
%# Create the gaussian filter with hsize = [5 5] and sigma = 2
G = fspecial('gaussian',[5 5],2);
%# Filter it
Ig = imfilter(I,G,'same');
%# Display
imshow(Ig)
#Jacob already showed you how to use the Gaussian filter in Matlab, so I won't repeat that.
I would choose filter size to be about 3*sigma in each direction (round to odd integer). Thus, the filter decays to nearly zero at the edges, and you won't get discontinuities in the filtered image.
The choice of sigma depends a lot on what you want to do. Gaussian smoothing is low-pass filtering, which means that it suppresses high-frequency detail (noise, but also edges), while preserving the low-frequency parts of the image (i.e. those that don't vary so much). In other words, the filter blurs everything that is smaller than the filter.
If you're looking to suppress noise in an image in order to enhance the detection of small features, for example, I suggest to choose a sigma that makes the Gaussian just slightly smaller than the feature.
In MATLAB R2015a or newer, it is no longer necessary (or advisable from a performance standpoint) to use fspecial followed by imfilter since there is a new function called imgaussfilt that performs this operation in one step and more efficiently.
The basic syntax:
B = imgaussfilt(A,sigma) filters image A with a 2-D Gaussian smoothing kernel with standard deviation specified by sigma.
The size of the filter for a given Gaussian standard deviation (sigam) is chosen automatically, but can also be specified manually:
B = imgaussfilt(A,sigma,'FilterSize',[3 3]);
The default is 2*ceil(2*sigma)+1.
Additional features of imgaussfilter are ability to operate on gpuArrays, filtering in frequency or spacial domain, and advanced image padding options. It looks a lot like IPP... hmmm. Plus, there's a 3D version called imgaussfilt3.