How to listen on a network port in Objective-C - iphone

I am trying to make an application for iPhone that can listen for traffick on a specific network port.
A server on my network is sending out messages (different status messages for devices the server handles) on a specific port.
My problem is that when I make a thread and makePairWithSocket I block the port for others who want to send messages to the server, so I only want to listen to the traffic on a specifyed port and then check for specific heraders and then use those messages.
I know how to make the connection and talk to the server using write and read streams, but then I makePairWithSocket and block the port for all other devices on the network
Any one that has any suggestions on how to listen on a port in Objective-C without pairing with the server?
Thanks in advance
Daniel

Check out CocoaAsyncSocket. It gives you a nice and structured way (with delegates) to send and receive data... also with multiple clients. The documentation is quite good. project link
edit: Have a look at the AsyncUdpSocket class for a stateless UDP connection.

I think this requires network support well below the socket API level, perhaps at the hardware driver level, assuming the packets are even being routed to your device.

Related

How to implement multicast sockets in swift?

I'm writing a server that, among other things, needs to be constantly sending data in different multicast addresses. The packages being sent might be received by a client side (an app) which will be switching between the mentioned addresses.
I'm using Perfect (https://github.com/PerfectlySoft/Perfect) for writing the server side, however had no luck using the Perfect-Net module nor using CocoaAsyncSocket. How could i implement both the sender and the receiver using swift? Any could snippet would be really useful.
I've been reading about multicasting and when it comes to the receiver, i've notice that in most languages (i.e. java or c#) the receiver often indicates a port number and a multicast ip-address, but when is the connection with the server being made? When does the socket bind to the real server ip-address?
Thanks in advance
If we talk about the TCP/IP stack, only IP and UDP support broadcasts and multicasts. They're both connectionless, and this is why you see only sending and receiving to special multicast addresses, but no binds and connects. You see it in different languages because (a) protocols are language-agnostic and (b) most implementations put reasonable efforts in trying to be compatible with BSD sockets interface.
If you want that true multicast, you'll need to find a swift implementation of sockets that allow setting options. Usual names for this operation is setsockopt. Multicast sender side doesn't need anything beyond a basic UDP socket (I suggest using UDP, not IP), while sender needs to be added to a multicast group. This Python example pretty much describes it.
However, it's worth noting that routers don't route broadcasts and multicasts. Hence you cannot use it over internet. If you need to use internet in your project, I'd advise you to use TCP - or websockets if your clients are browsers - and send messages to "groups" of them manually.
I guess you actually want Perfect-Kafka or Perfect-Mosquitto - Message Queue which allows a server to publish live streams to the client side subscribers. Low-level sockets will not easily fulfill your requirement.

Transfer files between 2 iPhones over wifi?

I've spent a few days looking for different solutions, but the whole area is quite complicated, and I'm wondering if anybody knows of any project where I can simply transfer NSData or an NSString or some other simple file over wifi to another iPhone on the network?
Np. Use bonjour to search for devices. Then use CocoaAsyncSocket to send and receive data. It works like a charm.
Little info about AsyncSock:
GCDAsyncSocket and AsyncSocket are TCP/IP socket networking libraries.
Here are the key features available in both:
Native objective-c, fully self-contained in one class. No need to muck
around with sockets or streams. This class handles everything for you.
Full delegate support Errors, connections, read completions, write
completions, progress, and disconnections all result in a call to your
delegate method.
Queued non-blocking reads and writes, with optional timeouts. You tell
it what to read or write, and it handles everything for you. Queueing,
buffering, and searching for termination sequences within the stream -
all handled for you automatically.
Automatic socket acceptance. Spin up a server socket, tell it to
accept connections, and it will call you with new instances of itself
for each connection.
Support for TCP streams over IPv4 and IPv6. Automatically connect to
IPv4 or IPv6 hosts. Automatically accept incoming connections over
both IPv4 and IPv6 with a single instance of this class. No more
worrying about multiple sockets.
Support for TLS / SSL Secure your socket with ease using just a single
method call. Available for both client and server sockets.

Lan chat design

I'm in the process of trying to write a chat application and I have a few issues
that I trying to work out. The application is basically a chat application that works on a Lan. One client acts as the
host and other clients can connect to the host and publicly chat among themselves. I want also the option of a client starting
a private chat with an already connected client. So what is the best way for this to happen. For example should the request message (which
contains the ip address of client) route through the host and then if the requested client wants to connect , then they initiate the connection
using ip of the requesting client. Should this also be on a separate port number. Does it matter if your application uses a number of ports.
Or, when ever a client connects to a host, the host should send them a list of users with there ip addresses, and then the client can
attempt a connection with the other client for a private chat.
Hope this all makes sense. Any help would be appreciated
Thanks
If you are just interested in a quick-and-dirty chat facility that only needs to work over a LAN, I'd suggest having all clients send and receive broadcast UDP packets on a single well-known port number. Then no server is necessary at all, and thus no discovery is necessary either, and things are a lot simpler.
If you really want to go the client-server route, though, you should have your server (aka host) machine accept TCP connections on a single well-known port, and then have it use select() or poll() to multiplex the incoming TCP connections and forward any data that comes in from each incoming TCP socket to all of the others sockets. Clients can connect via TCP to the server at this well-known port, but the clients will have to have some way of knowing what IP address to connect to... either from having the user type in the IP address of the server, or by some discovery mechanism (broadcast UDP packets could be used to implement that). This way is a lot more work though.
I'm all for creating my own but depending on time constraints sometimes I look for alternatives like this I used it in a company I worked at before. It's really good. But if you decide to make your own you first have to map out a logic, structure, Database and so on before you even think about code..

How do I design a peer-to-peer app that avoids using listening sockets?

I've noticed that if you want to write an application that utilizes listening sockets, you need to create port forwarding rules on your router. If I want to connect two computers without either one of the the computers messing about with router settings, is there a way that I can get the two clients to connect to each other without either of them using listening sockets? There would need to be another server somewhere else telling them to connect but is it possible?
Some clarifications, and an answer:
Routers don't care about, or handle ports, that is the role of a firewall, which do port forwarding. The router/firewall combined device most of us have at home adds to the common misunderstanding.
Can you connect two computers without ServerSocket? No. You can use UDP (a stateless, connectionless communication protocol), but the role of a ServerSocket is to "listen" for incoming connection requests, and generate a Socket from those requests, which creates a communications channel between two endpoints. A Socket has both an InputStream and an OutputStream, so it can both read at write at either end. At that point (once the connection is made), the distinction between client/server is arbitrary, since a Socket is a two-way connection object, which allows both sides to send/receive.
What about proxying? Doesn't that allow connections between two computers without a ServerSocket? Well, no, because the server that's doing the proxying still has to be using a ServerSocket. Depending on what application you're trying to implement, this might be the way to go, or or might just add overhead. Even if there were "another server somewhere else telling them to connect", somebody has to listen for a connection request, which is the job of the ServerSocket.
If connections are happening over already open ports (most publicly accessible servers have ports <1024 not blocked by firewalls, but exceptions exist), then you shouldn't need to change firewall settings to get the connection to work.
So, to reiterate, the ONLY role of a ServerSocket (as far as your question is concerned) is to listen for incoming connection requests, and from those requests, create a Socket, which is a two-way communications channel between the two end points.
To answer the question, "How do I design a peer-to-peer app that avoids using listening sockets?", you don't. In the case of something like Vuze, the software acts as both client and server simultaneously, hence the term "peer", vs. "client" or "server" alone. In Vuze every client is a server, and every server (except for the tracker) is a client.
If you need a TCP connection between the 2 computers and both of them are behind routers (and you don't want to set up port forwarding) I think the only other possibility you have is having a third server somewhere that isn't behind a firewall running a ServerSocket and accepting connections between your 2 other computers and proxying communications between the 2. You can't establish a TCP Connection between the 2 without one listening to a socket and the other connecting to it.
Q: If I want to connect two computers without either one of the the
computers messing about with router settings, is there a way that I
can get the two clients to connect to each other
Yes: have the server listen on an open port :)

UDP for multiplayer game

I have no experience with sockets nor multiplayer programming.
I need to code a multiplayer mode for a game I made in c++. It's a puzzle game but the game mode will not be turn-based, it's more like cooperative.
I decided to use UDP, so I've read some tutorials, and all the samples I find decribes how to create a client that sends data and a server that receives it.
My game will be played by two players, and both will send and receive data to/from the other.
Do I need to code a client and a server?
Should I use the same socket to send and receive?
Should I send and receive data in the same port?
Thanks, I'm kind of lost.
Read how the masters did it:
http://www.bluesnews.com/abrash/chap70.shtml
Read the code:
git clone git://quake.git.sourceforge.net/gitroot/quake/quake
Open one UDP socket and use sendto and recvfrom. The following file contains the functions for the network client.
quake/libs/net/nc/net_udp.c
UDP_OpenSocket calls socket (PF_INET, SOCK_DGRAM, IPPROTO_UDP)
NET_SendPacket calls sendto
NET_GetPacket calls recvfrom
Do I need to code a client and a server?
It depends. For a two player game, with both computers on the same LAN, or both on the open Internet, you could simply have the two computers send packets to each other directly.
On the other hand, if you want your game to work across the Internet, when one or both players are behind a NAT and/or firewall, then you have the problem that the NAT and/or firewall will probably filter out the other player's incoming UDP packets, unless the local player goes to the trouble of setting up port-forwarding in their firewall... something that many users are not willing (or able) to do. In that case, you might be better off running a public server that both clients can connect to, which forwards data from one client to another. (You might also consider using TCP instead of UDP in that case, at least as a fallback, since TCP streams are in general likely to have fewer issues with firewalls than UDP packets)
Should I use the same socket to send and receive?
Should I send and receive data in the same port?
You don't have to, but you might as well -- there's no downside to using just a single socket and a single port, and it will simplify your code a bit.
Note that this answer is all about using UDP sockets. If you change your mind to use TCP sockets, it will almost all be irrelevant.
Do I need to code a client and a server?
Since you've chosen to to use UDP (a fair choice if your data isn't really important and benefits more from lower latency than reliable communication), you don't have much of a choice here: a "server" is a piece of code for receiving packets from the network, and your "client" is for sending packets into the network. UDP doesn't provide any mechanism for the server to communicate to the client (unlike TCP which establishes a 2 way socket). In this case, if you want to have two way communication between your two hosts, they'll each need server and client code.
Now, you could choose to use UDP broadcasts, where both clients listen and send on the broadcast address (usually 192.168.1.255 for home networks, but it can be anything and is configurable). This is slightly more complex to code for, but it would eliminate the need for client/server configuration and may be seen as more plug 'n play for your users. However, note that this will not work over the Internet.
Alternatively, you can create a hybrid method where hosts are discovered by broadcasting and listening for broadcasts, but then once the hosts are chosen you use host to host unicast sockets. You could provide fallback to manually specify network settings (remote host/port for each) so that it can work over the Internet.
Finally, you could provide a true "server" role that all clients connect to. The server would then know which clients connected to it and would in turn try to connect back to them. This is a server at a higher level, not at the socket level. Both hosts still need to have packet sending (client) and receiving (server) code.
Should I use the same socket to send and receive?
Well, since you're using UDP, you don't really have a choice. UDP doesn't establish any kind of persistent connection that they can communicate back and forth over. See the above point for more details.
Should I send and receive data in the same port?
In light of the above question, your question may be better phrased "should each host listen on the same port?". I think that would certainly make your coding easier, but it doesn't have to. If you don't and you opt for the 3rd option of the first point, you'll need a "connect back to me on this port" datafield in the "client's" first message to the server.