How do I break out of a loop in Scala? - scala

How do I break out a loop?
var largest=0
for(i<-999 to 1 by -1) {
for (j<-i to 1 by -1) {
val product=i*j
if (largest>product)
// I want to break out here
else
if(product.toString.equals(product.toString.reverse))
largest=largest max product
}
}
How do I turn nested for loops into tail recursion?
From Scala Talk at FOSDEM 2009 http://www.slideshare.net/Odersky/fosdem-2009-1013261
on the 22nd page:
Break and continue
Scala does not have them. Why?
They are a bit imperative; better use many smaller functions
Issue how to interact with closures.
They are not needed!
What is the explanation?

You have three (or so) options to break out of loops.
Suppose you want to sum numbers until the total is greater than 1000. You try
var sum = 0
for (i <- 0 to 1000) sum += i
except you want to stop when (sum > 1000).
What to do? There are several options.
(1a) Use some construct that includes a conditional that you test.
var sum = 0
(0 to 1000).iterator.takeWhile(_ => sum < 1000).foreach(i => sum+=i)
(warning--this depends on details of how the takeWhile test and the foreach are interleaved during evaluation, and probably shouldn't be used in practice!).
(1b) Use tail recursion instead of a for loop, taking advantage of how easy it is to write a new method in Scala:
var sum = 0
def addTo(i: Int, max: Int) {
sum += i; if (sum < max) addTo(i+1,max)
}
addTo(0,1000)
(1c) Fall back to using a while loop
var sum = 0
var i = 0
while (i <= 1000 && sum <= 1000) { sum += 1; i += 1 }
(2) Throw an exception.
object AllDone extends Exception { }
var sum = 0
try {
for (i <- 0 to 1000) { sum += i; if (sum>=1000) throw AllDone }
} catch {
case AllDone =>
}
(2a) In Scala 2.8+ this is already pre-packaged in scala.util.control.Breaks using syntax that looks a lot like your familiar old break from C/Java:
import scala.util.control.Breaks._
var sum = 0
breakable { for (i <- 0 to 1000) {
sum += i
if (sum >= 1000) break
} }
(3) Put the code into a method and use return.
var sum = 0
def findSum { for (i <- 0 to 1000) { sum += i; if (sum>=1000) return } }
findSum
This is intentionally made not-too-easy for at least three reasons I can think of. First, in large code blocks, it's easy to overlook "continue" and "break" statements, or to think you're breaking out of more or less than you really are, or to need to break two loops which you can't do easily anyway--so the standard usage, while handy, has its problems, and thus you should try to structure your code a different way. Second, Scala has all sorts of nestings that you probably don't even notice, so if you could break out of things, you'd probably be surprised by where the code flow ended up (especially with closures). Third, most of Scala's "loops" aren't actually normal loops--they're method calls that have their own loop, or they are recursion which may or may not actually be a loop--and although they act looplike, it's hard to come up with a consistent way to know what "break" and the like should do. So, to be consistent, the wiser thing to do is not to have a "break" at all.
Note: There are functional equivalents of all of these where you return the value of sum rather than mutate it in place. These are more idiomatic Scala. However, the logic remains the same. (return becomes return x, etc.).

This has changed in Scala 2.8 which has a mechanism for using breaks. You can now do the following:
import scala.util.control.Breaks._
var largest = 0
// pass a function to the breakable method
breakable {
for (i<-999 to 1 by -1; j <- i to 1 by -1) {
val product = i * j
if (largest > product) {
break // BREAK!!
}
else if (product.toString.equals(product.toString.reverse)) {
largest = largest max product
}
}
}

It is never a good idea to break out of a for-loop. If you are using a for-loop it means that you know how many times you want to iterate. Use a while-loop with 2 conditions.
for example
var done = false
while (i <= length && !done) {
if (sum > 1000) {
done = true
}
}

To add Rex Kerr answer another way:
(1c) You can also use a guard in your loop:
var sum = 0
for (i <- 0 to 1000 ; if sum<1000) sum += i

Simply We can do in scala is
scala> import util.control.Breaks._
scala> object TestBreak {
def main(args : Array[String]) {
breakable {
for (i <- 1 to 10) {
println(i)
if (i == 5)
break;
} } } }
output :
scala> TestBreak.main(Array())
1
2
3
4
5

Since there is no break in Scala yet, you could try to solve this problem with using a return-statement. Therefore you need to put your inner loop into a function, otherwise the return would skip the whole loop.
Scala 2.8 however includes a way to break
http://www.scala-lang.org/api/rc/scala/util/control/Breaks.html

An approach that generates the values over a range as we iterate, up to a breaking condition, instead of generating first a whole range and then iterating over it, using Iterator, (inspired in #RexKerr use of Stream)
var sum = 0
for ( i <- Iterator.from(1).takeWhile( _ => sum < 1000) ) sum += i

// import following package
import scala.util.control._
// create a Breaks object as follows
val loop = new Breaks;
// Keep the loop inside breakable as follows
loop.breakable{
// Loop will go here
for(...){
....
// Break will go here
loop.break;
}
}
use Break module
http://www.tutorialspoint.com/scala/scala_break_statement.htm

Just use a while loop:
var (i, sum) = (0, 0)
while (sum < 1000) {
sum += i
i += 1
}

Here is a tail recursive version. Compared to the for-comprehensions it is a bit cryptic, admittedly, but I'd say its functional :)
def run(start:Int) = {
#tailrec
def tr(i:Int, largest:Int):Int = tr1(i, i, largest) match {
case x if i > 1 => tr(i-1, x)
case _ => largest
}
#tailrec
def tr1(i:Int,j:Int, largest:Int):Int = i*j match {
case x if x < largest || j < 2 => largest
case x if x.toString.equals(x.toString.reverse) => tr1(i, j-1, x)
case _ => tr1(i, j-1, largest)
}
tr(start, 0)
}
As you can see, the tr function is the counterpart of the outer for-comprehensions, and tr1 of the inner one. You're welcome if you know a way to optimize my version.

Close to your solution would be this:
var largest = 0
for (i <- 999 to 1 by -1;
j <- i to 1 by -1;
product = i * j;
if (largest <= product && product.toString.reverse.equals (product.toString.reverse.reverse)))
largest = product
println (largest)
The j-iteration is made without a new scope, and the product-generation as well as the condition are done in the for-statement (not a good expression - I don't find a better one). The condition is reversed which is pretty fast for that problem size - maybe you gain something with a break for larger loops.
String.reverse implicitly converts to RichString, which is why I do 2 extra reverses. :) A more mathematical approach might be more elegant.

I am new to Scala, but how about this to avoid throwing exceptions and repeating methods:
object awhile {
def apply(condition: () => Boolean, action: () => breakwhen): Unit = {
while (condition()) {
action() match {
case breakwhen(true) => return ;
case _ => { };
}
}
}
case class breakwhen(break:Boolean);
use it like this:
var i = 0
awhile(() => i < 20, () => {
i = i + 1
breakwhen(i == 5)
});
println(i)
if you don’t want to break:
awhile(() => i < 20, () => {
i = i + 1
breakwhen(false)
});

The third-party breakable package is one possible alternative
https://github.com/erikerlandson/breakable
Example code:
scala> import com.manyangled.breakable._
import com.manyangled.breakable._
scala> val bkb2 = for {
| (x, xLab) <- Stream.from(0).breakable // create breakable sequence with a method
| (y, yLab) <- breakable(Stream.from(0)) // create with a function
| if (x % 2 == 1) continue(xLab) // continue to next in outer "x" loop
| if (y % 2 == 0) continue(yLab) // continue to next in inner "y" loop
| if (x > 10) break(xLab) // break the outer "x" loop
| if (y > x) break(yLab) // break the inner "y" loop
| } yield (x, y)
bkb2: com.manyangled.breakable.Breakable[(Int, Int)] = com.manyangled.breakable.Breakable#34dc53d2
scala> bkb2.toVector
res0: Vector[(Int, Int)] = Vector((2,1), (4,1), (4,3), (6,1), (6,3), (6,5), (8,1), (8,3), (8,5), (8,7), (10,1), (10,3), (10,5), (10,7), (10,9))

import scala.util.control._
object demo_brk_963
{
def main(args: Array[String])
{
var a = 0;
var b = 0;
val numList1 = List(1,2,3,4,5,6,7,8,9,10);
val numList2 = List(11,12,13);
val outer = new Breaks; //object for break
val inner = new Breaks; //object for break
outer.breakable // Outer Block
{
for( a <- numList1)
{
println( "Value of a: " + a);
inner.breakable // Inner Block
{
for( b <- numList2)
{
println( "Value of b: " + b);
if( b == 12 )
{
println( "break-INNER;");
inner.break;
}
}
} // inner breakable
if( a == 6 )
{
println( "break-OUTER;");
outer.break;
}
}
} // outer breakable.
}
}
Basic method to break the loop, using Breaks class.
By declaring the loop as breakable.

Ironically the Scala break in scala.util.control.Breaks is an exception:
def break(): Nothing = { throw breakException }
The best advice is: DO NOT use break, continue and goto! IMO they are the same, bad practice and an evil source of all kind of problems (and hot discussions) and finally "considered be harmful". Code block structured, also in this example breaks are superfluous.
Our Edsger W. Dijkstra† wrote:
The quality of programmers is a decreasing function of the density of go to statements in the programs they produce.

I got a situation like the code below
for(id<-0 to 99) {
try {
var symbol = ctx.read("$.stocks[" + id + "].symbol").toString
var name = ctx.read("$.stocks[" + id + "].name").toString
stocklist(symbol) = name
}catch {
case ex: com.jayway.jsonpath.PathNotFoundException=>{break}
}
}
I am using a java lib and the mechanism is that ctx.read throw a Exception when it can find nothing.
I was trapped in the situation that :I have to break the loop when a Exception was thrown, but scala.util.control.Breaks.break using Exception to break the loop ,and it was in the catch block thus it was caught.
I got ugly way to solve this: do the loop for the first time and get the count of the real length.
and use it for the second loop.
take out break from Scala is not that good,when you are using some java libs.

Clever use of find method for collection will do the trick for you.
var largest = 0
lazy val ij =
for (i <- 999 to 1 by -1; j <- i to 1 by -1) yield (i, j)
val largest_ij = ij.find { case(i,j) =>
val product = i * j
if (product.toString == product.toString.reverse)
largest = largest max product
largest > product
}
println(largest_ij.get)
println(largest)

Below is code to break a loop in a simple way
import scala.util.control.Breaks.break
object RecurringCharacter {
def main(args: Array[String]) {
val str = "nileshshinde";
for (i <- 0 to str.length() - 1) {
for (j <- i + 1 to str.length() - 1) {
if (str(i) == str(j)) {
println("First Repeted Character " + str(i))
break() //break method will exit the loop with an Exception "Exception in thread "main" scala.util.control.BreakControl"
}
}
}
}
}

I don't know how much Scala style has changed in the past 9 years, but I found it interesting that most of the existing answers use vars, or hard to read recursion. The key to exiting early is to use a lazy collection to generate your possible candidates, then check for the condition separately. To generate the products:
val products = for {
i <- (999 to 1 by -1).view
j <- (i to 1 by -1).view
} yield (i*j)
Then to find the first palindrome from that view without generating every combination:
val palindromes = products filter {p => p.toString == p.toString.reverse}
palindromes.head
To find the largest palindrome (although the laziness doesn't buy you much because you have to check the entire list anyway):
palindromes.max
Your original code is actually checking for the first palindrome that is larger than a subsequent product, which is the same as checking for the first palindrome except in a weird boundary condition which I don't think you intended. The products are not strictly monotonically decreasing. For example, 998*998 is greater than 999*997, but appears much later in the loops.
Anyway, the advantage of the separated lazy generation and condition check is you write it pretty much like it is using the entire list, but it only generates as much as you need. You sort of get the best of both worlds.

Related

How to access previous element when using yield in for loop chisel3

This is mix Chisel / Scala question.
Background, I need to sum up a lot of numbers (the number of input signals in configurable). Due to timing constrains I had to split it to groups of 4 and pipe(register it), then it is fed into next stage (which will be 4 times smaller, until I reach on)
this is my code:
// log4 Aux function //
def log4(n : Int): Int = math.ceil(math.log10(n.toDouble) / math.log10(4.0)).toInt
// stage //
def Adder4PipeStage(len: Int,in: Vec[SInt]) : Vec[SInt] = {
require(in.length % 4 == 0) // will not work if not a muliplication of 4
val pipe = RegInit(VecInit(Seq.fill(len/4)(0.S(in(0).getWidth.W))))
pipe.zipWithIndex.foreach {case(p,j) => p := in.slice(j*4,(j+1)*4).reduce(_ +& _)}
pipe
}
// the pipeline
val adderPiped = for(j <- 1 to log4(len)) yield Adder4PipeStage(len/j,if(j==1) io.in else <what here ?>)
how to I access the previous stage, I am also open to hear about other ways to implement the above
There are several things you could do here:
You could just use a var for the "previous" value:
var prev: Vec[SInt] = io.in
val adderPiped = for(j <- 1 to log4(len)) yield {
prev = Adder4PipeStage(len/j, prev)
prev
}
It is a little weird using a var with a for yield (since the former is fundamentally mutable while the latter tends to be used with immutable-style code).
You could alternatively use a fold building up a List
// Build up backwards and reverse (typical in functional programming)
val adderPiped = (1 to log4(len)).foldLeft(io.in :: Nil) {
case (pipes, j) => Adder4PipeStage(len/j, pipes.head) :: pipes
}.reverse
.tail // Tail drops "io.in" which was 1st element in the result List
If you don't like the backwards construction of the previous fold,
You could use a fold with a Vector (better for appending than a List):
val adderPiped = (1 to log4(len)).foldLeft(Vector(io.in)) {
case (pipes, j) => pipes :+ Adder4PipeStage(len/j, pipes.last)
}.tail // Tail drops "io.in" which was 1st element in the result Vector
Finally, if you don't like these immutable ways of doing it, you could always just embrace mutability and write something similar to what one would in Java or Python:
For loop and mutable collection
val pipes = new mutable.ArrayBuffer[Vec[SInt]]
for (j <- 1 to log4(len)) {
pipes += Adder4PipeStage(len/j, if (j == 1) io.in else pipes.last)
}

Scala : How to break out of a nested for comprehension

I'm trying to write some code as below -
def kthSmallest(matrix: Array[Array[Int]], k: Int): Int = {
val pq = new PriorityQueue[Int]() //natural ordering
var count = 0
for (
i <- matrix.indices;
j <- matrix(0).indices
) yield {
pq += matrix(i)(j)
count += 1
} //This would yield Any!
pq.dequeue() //kth smallest.
}
My question is, that I only want to loop till the time count is less than k (something like takeWhile(count != k)), but as I'm also inserting elements into the priority queue in the yield, this won't work in the current state.
My other options are to write a nested loop and return once count reaches k. Is it possible to do with yield? I could not find a idiomatic way of doing it yet. Any pointers would be helpful.
It's not idiomatic for Scala to use vars or break loops. You can go for recursion, lazy evaluation or duct tape a break, giving up on some performance (just like return, it's implemented as an Exception, and won't perform well enough). Here are the options broken down:
Use recursion - recursive algorithms are the analog of loops in functional languages
def kthSmallest(matrix: Array[Array[Int]], k: Int): Int = {
val pq = new PriorityQueue[Int]() //natural ordering
#tailrec
def fillQueue(i: Int, j: Int, count: Int): Unit =
if (count >= k || i >= matrix.length) ()
else {
pq += matrix(i)(j)
fillQueue(
if (j >= matrix(i).length - 1) i + 1 else i,
if (j >= matrix(i).length - 1) 0 else j + 1,
count + 1)
}
fillQueue(0, 0, 0)
pq.dequeue() //kth smallest.
}
Use a lazy structure, as chengpohi suggested - this doesn't sound very much like a pure function though. I'd suggest to use an Iterator instead of a Stream in this case though - as iterators don't memoize the steps they've gone through (might spare some memory for large matrices).
For those desperately willing to use break, Scala supports it in an attachable fashion (note the performance caveat mentioned above):
import scala.util.control.Breaks
breakable {
// loop code
break
}
There is a way using the Stream lazy evaluation to do this. Since for yield is equal to flatMap, you can convert for yield to flatMap with Stream:
matrix.indices.toStream.flatMap(i => {
matrix(0).indices.toStream.map(j => {
pq += matrix(i)(j)
count += 1
})
}).takeWhile(_ => count <= k)
Use toStream to convert the collection to Stream, and Since Stream is lazy evaluation, so we can use takeWhile to predicate count to terminate the less loops without init others.

What is the fastest way to subtract two arrays in scala

I have two arrays (that i have pulled out of a matrix (Array[Array[Int]]) and I need to subtract one from the other.
At the moment I am using this method however, when I profile it, it is the bottleneck.
def subRows(a: Array[Int], b: Array[Int], sizeHint: Int): Array[Int] = {
val l: Array[Int] = new Array(sizeHint)
var i = 0
while (i < sizeHint) {
l(i) = a(i) - b(i)
i += 1
}
l
}
I need to do this billions of times so any improvement in speed is a plus.
I have tried using a List instead of an Array to collect the differences and it is MUCH faster but I lose all benefit when I convert it back to an Array.
I did modify the downstream code to take a List to see if that would help but I need to access the contents of the list out of order so again there is loss of any gains there.
It seems like any conversion of one type to another is expensive and I am wondering if there is some way to use a map etc. that might be faster.
Is there a better way?
EDIT
Not sure what I did the first time!?
So the code I used to test it was this:
def subRowsArray(a: Array[Int], b: Array[Int], sizeHint: Int): Array[Int] = {
val l: Array[Int] = new Array(sizeHint)
var i = 0
while (i < sizeHint) {
l(i) = a(i) - b(i)
i += 1
}
l
}
def subRowsList(a: Array[Int], b: Array[Int], sizeHint: Int): List[Int] = {
var l: List[Int] = Nil
var i = 0
while (i < sizeHint) {
l = a(i) - b(i) :: l
i += 1
}
l
}
val a = Array.fill(100, 100)(scala.util.Random.nextInt(2))
val loops = 30000 * 10000
def runArray = for (i <- 1 to loops) subRowsArray(a(scala.util.Random.nextInt(100)), a(scala.util.Random.nextInt(100)), 100)
def runList = for (i <- 1 to loops) subRowsList(a(scala.util.Random.nextInt(100)), a(scala.util.Random.nextInt(100)), 100)
def optTimer(f: => Unit) = {
val s = System.currentTimeMillis
f
System.currentTimeMillis - s
}
The results I thought I got the first time I did this were the exact opposite... I must have misread or mixed up the methods.
My apologies for asking a bad question.
That code is the fastest you can manage single-threaded using a standard JVM. If you think List is faster, you're either fooling yourself or not actually telling us what you're doing. Putting an Int into List requires two object creations: one to create the list element, and one to box the integer. Object creations take about 10x longer than an array access. So it's really not a winning proposition to do it any other way.
If you really, really need to go faster, and must stay with a single thread, you should probably switch to C++ or the like and explicitly use SSE instructions. See this question, for example.
If you really, really need to go faster and can use multiple threads, then the easiest is to package up a chunk of work like this (i.e. a sensible number of pairs of vectors that need to be subtracted--probably at least a few million elements per chunk) into a list as long as the number of processors on your machine, and then call list.par.map(yourSubtractionRoutineThatActsOnTheChunkOfWork).
Finally, if you can be destructive,
a(i) -= b(i)
in the inner loop is, of course, faster. Likewise, if you can reuse space (e.g. with System.arraycopy), you're better off than if you have to keep allocating it. But that changes the interface from what you've shown.
You can use Scalameter to try a benchmark the two implementations which requires at least JRE 7 update 4 and Scala 2.10 to be run. I used scala 2.10 RC2.
Compile with scalac -cp scalameter_2.10-0.2.jar RangeBenchmark.scala.
Run with scala -cp scalameter_2.10-0.2.jar:. RangeBenchmark.
Here's the code I used:
import org.scalameter.api._
object RangeBenchmark extends PerformanceTest.Microbenchmark {
val limit = 100
val a = new Array[Int](limit)
val b = new Array[Int](limit)
val array: Array[Int] = new Array(limit)
var list: List[Int] = Nil
val ranges = for {
size <- Gen.single("size")(limit)
} yield 0 until size
measure method "subRowsArray" in {
using(ranges) curve("Range") in {
var i = 0
while (i < limit) {
array(i) = a(i) - b(i)
i += 1
}
r => array
}
}
measure method "subRowsList" in {
using(ranges) curve("Range") in {
var i = 0
while (i < limit) {
list = a(i) - b(i) :: list
i += 1
}
r => list
}
}
}
Here's the results:
::Benchmark subRowsArray::
Parameters(size -> 100): 8.26E-4
::Benchmark subRowsList::
Parameters(size -> 100): 7.94E-4
You can draw your own conclusions. :)
The stack blew up on larger values of limit. I'll guess it's because it's measuring the performance many times.

How to use yield with multistatement for?

The code is just for illustrative purposes, i.e. it is an example not a real code.
I tried this:
val results = for(i <- 1 to 20)
{
val x = i+1
println(x)
yield x
}
and this
val results = for {i <- 1 to 20;
val x = i+1;
println(x)
}
yield x
But none of this works -- I need a generator, definition, and a statement -- is this possible to do it with yield? If yes, what is the correct syntax?
Hopefully, this will get you started:
val result = for (i <- 1 to 10 if i%2==0) yield {
println(i);
i
}
which is equivalent to
(1 to 10).filter(_%2==0).map(x => { println(x); x } )
You seem to think that for in Scala is similar to for in imperative languages. It's not! Behind the scenes, it makes use of flatMap. Every expression in the first section of the for/yield syntax must have a certain form. If I'm not mistaken, it must either be an assignment (restricted to val, maybe) or a <- expression. You can hack it to get what you want:
for {
i <- 1 to 20
val x = i + 1
_ <- {println(x); List(1)}
} yield x
But that is pretty horrible. Hacking the yield, as Jamil demonstrated, is also a possibility, though also pretty horrible.
The question is, what exactly are you trying to accomplish? foreach is best used for side-effecting loop code:
(1 to 10) foreach { i =>
val x = i+1
println(x)
}
map is best used for producing a new list of the same length:
(1 to 10) map (i => i + 1)
It is rather unusual, and somewhat ugly, to want to do both at the same time.

Recursive selection sort problem

I'm doing some revision for an upcoming repeat :( and I've run into a problem with the following recursive implementation of Selection Sort in Scala.
For the most part this works, but it doesn't seem to be swapping the first two values when they should be swapped. I'm sure it's pretty basic but my problem solving cap is a little rusty at this stage
Any ideas greatly appreciated, here is the code I have so far:
object question3 {
def main(args : Array[String]) : Unit =
{
var arr = Array(8,9,8,5,2,4,1,6,3,7,5,-1,5,0,99)
arr = sort(arr, 0, 0, 0)
println("RESULT:")
arr.foreach(str=>print(str+","))
}
def sort(arr : Array[Int], n : Int, min : Int, j : Int): Array[Int] =
{
if(n == arr.length)
{
return arr
}
else
{
var j = n+1
var min = n
if(j < arr.length)
{
if(arr(j) < arr(min))
{
min = j
}
sort(arr, n+1, min, j+1)
}
if(min != n)
{
var t = arr(n)
arr(n) = arr(min)
arr(min) = t
}
sort(arr, n+1, min, j)
}
}
}
First, you never use the min and j parameters for anything, instead shadowing them with local definitions.
Second, you should not set the min variable until after the first recursive call. As your code stands, it sets min according to which of the first two initial elements is smaller, but never considers the possibility that there's an even smaller one later in the array.
This gives something that looks more like an attempt at bubblesort than selection sort. If you want true selection sort you probably want a sepearate loop (or recursive function) to find the index of the minimal element first.