Help with a Coq proof for SubSequences - coq

I have the defined inductive types:
Inductive InL (A:Type) (y:A) : list A -> Prop :=
| InHead : forall xs:list A, InL y (cons y xs)
| InTail : forall (x:A) (xs:list A), InL y xs -> InL y (cons x xs).
Inductive SubSeq (A:Type) : list A -> list A -> Prop :=
| SubNil : forall l:list A, SubSeq nil l
| SubCons1 : forall (x:A) (l1 l2:list A), SubSeq l1 l2 -> SubSeq l1 (x::l2)
| SubCons2 : forall (x:A) (l1 l2:list A), SubSeq l1 l2 -> SubSeq (x::l1) (x::l2).
Now I have to prove a series of properties of that inductive type, but I keep getting stuck.
Lemma proof1: forall (A:Type) (x:A) (l1 l2:list A), SubSeq l1 l2 -> InL x l1 -> InL x l2.
Proof.
intros.
induction l1.
induction l2.
exact H0.
Qed.
Can some one help me advance.

In fact, it is easier to do an induction on the SubSet judgment directly.
However, you need to be as general as possible, so here is my advice:
Lemma proof1: forall (A:Type) (x:A) (l1 l2:list A),
SubSeq l1 l2 -> InL x l1 -> InL x l2.
(* first introduce your hypothesis, but put back x and In foo
inside the goal, so that your induction hypothesis are correct*)
intros.
revert x H0. induction H; intros.
(* x In [] is not possible, so inversion will kill the subgoal *)
inversion H0.
(* here it is straitforward: just combine the correct hypothesis *)
apply InTail; apply IHSubSeq; trivial.
(* x0 in x::l1 has to possible sources: x0 == x or x0 in l1 *)
inversion H0; subst; clear H0.
apply InHead.
apply InTail; apply IHSubSeq; trivial.
Qed.
"inversion" is a tactic that checks an inductive term and gives you all the possible way to build such a term !!without any induction hypothesis!!
It only gives you the constructive premices.
You could have done it directly by induction on l1 then l2, but you would have to construct by hand the correct instance of inversion because your induction hypothesis would have been really weak.
Hope it helps,
V.

Related

How to prove that the subsequence of an empty list is empty?

I'm new in coq. i am trying to prove that the subsequence of an empty list is empty
This is the lemma i'm working on:
Lemma sub_nil : forall l , subseq l nil <-> l=nil.
i tried to split so i can have
subseq l nil -> l = nil
and
l = nil -> subseq l nil
to prove the first one i tried an induction on l but i blocked when it comes to prove that
subseq (a :: l) nil -> a :: l = nil
thanks.
The tactic to use here is inversion. Paraphrasing the coq documentation for inversion! :
Given an inductive hypothesis (H:I t), then inversion applied to H derives for each possible constructor c i of (I t), all the necessary conditions that should hold for the instance (I t) to be proved by c i.
Assuming the subseq predicate is given as follows:
Inductive subseq {A:Type} : list A -> list A -> Prop :=
| SubNil : forall (l:list A), subseq nil l
| SubCons1 : forall (s l:list A) (x:A), subseq s l -> subseq s (x::l)
| SubCons2 : forall (s l: list A) (x:A), subseq s l -> subseq (x::s) (x::l).
The proof would be stuck here(exactly at the place you specified):
Lemma sub_nil2 : forall (A:Type) (l: list A) , subseq l nil <-> l=nil.
Proof.
split.
- destruct l eqn:E; intros.
* reflexivity.
(*Now unable to prove a::l0 = [] because the hypothesis: subseq (a :: l0) [] is absurd.*)
* inversion H.(*Coq reasons that this hypothesis is not possible and discharges the proof trivially*)
- intros. subst. apply SubNil.
Qed.
Note that I used the destruct tactic but the issue remains even with induction tactic.
The entire proof can be written cleanly as below:
Lemma sub_nil : forall (A:Type) (l: list A) , subseq l nil <-> l=nil.
Proof.
split; intros.
- inversion H. reflexivity.
- subst. apply SubNil.
Qed.

Abstracting patterns in induction rule for inductive predicates for Coq

Consider the following proposition in Coq:
Inductive subseq : list nat -> list nat -> Prop :=
| nil_s : forall (l: list nat), subseq nil l
| cons_in l1 l2 x (H: subseq l1 l2) : subseq (x :: l1) (x :: l2)
| cons_nin l1 l2 x (H: subseq l1 l2) : subseq l1 (x :: l2)
.
Lemma subseq_remove_rewritten: forall (x:nat) (l1' l1 l2 : list nat),
subseq l1' l2 ->
l1' = (x :: l1) ->
subseq l1 l2.
Proof.
intros x l1' l1 l2 H1 H2.
induction H1.
- discriminate.
- injection H2 as H3 H4.
rewrite H4 in H1.
apply cons_nin. apply H1.
- apply IHsubseq in H2.
apply cons_nin. apply H2.
Qed.
Lemma subseq_remove: forall (x:nat) (l1 l2 : list nat),
subseq (x :: l1) l2 ->
subseq l1 l2.
Proof.
intros x l1 l2 H.
apply subseq_remove_rewritten with (x:=x) (l1':=x :: l1).
apply H.
reflexivity.
Qed.
I worked in Isabelle before Coq. There originally, the induction tactic could not solve directly this goal and the trick was to come up with a lemma like subseq_remove_rewritten and then prove the original goal. This is the situation in the manual Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Later, the tactic became smarter and one can write patterns in which to abstract on. So the proof is written like this:
lemma
assumes "subseq (x # l1) l2"
shows "subseq l1 l2"
using assms
apply(induction "x # l1" "l2" rule: subseq.induct)
apply simp
apply(intro subseq.intros(3),simp)
by (intro subseq.intros(3))
I was wondering if Coq has a similar way to avoid proving a lemma like subseq_remove_rewritten and go directly to prove subseq_remove.
You can use the dependent induction tactic (documented here). For example:
Require Import Coq.Lists.List.
Import ListNotations.
Require Import Coq.Program.Equality. (* Needed to use the tactic *)
Inductive subseq : list nat -> list nat -> Prop :=
| nil_s : forall (l: list nat), subseq nil l
| cons_in l1 l2 x (H: subseq l1 l2) : subseq (x :: l1) (x :: l2)
| cons_nin l1 l2 x (H: subseq l1 l2) : subseq l1 (x :: l2)
.
Lemma subseq_remove: forall (x:nat) (l1 l2 : list nat),
subseq (x :: l1) l2 ->
subseq l1 l2.
Proof.
intros x l1 l2 H.
dependent induction H generalizing x.
- now apply cons_nin.
- eauto using cons_nin.
Qed.
Unfortunately, though this tactic has been around for a while, it is still described as experimental in the reference manual, and I don't know if the Coq developers have any plans of improving it in the future. It has a few deficiencies, such as not allowing the user to name the variables and hypotheses used in the induction proof. I personally prefer to add the equality assumptions to the proof myself, as in your first attempt, or to reformulate the definition of subseq as a Fixpoint, so that you can invert the hypothesis by simplification. For example:
Require Import Coq.Lists.List.
Import ListNotations.
Fixpoint subseq (l1 l2 : list nat) : Prop :=
match l1, l2 with
| [], _ => True
| x1 :: l1, [] => False
| x1 :: l1, x2 :: l2 => x1 = x2 /\ subseq l1 l2 \/ subseq (x1 :: l1) l2
end.
Lemma subseq_nin x2 l1 l2 : subseq l1 l2 -> subseq l1 (x2 :: l2).
Proof. destruct l1 as [|x1 l1]; simpl; eauto. Qed.
Lemma subseq_remove: forall (x:nat) (l1 l2 : list nat),
subseq (x :: l1) l2 ->
subseq l1 l2.
Proof.
intros x l1 l2 H.
induction l2 as [|x2 l2 IH]; try easy.
destruct H as [[<- H]|H]; eauto using subseq_nin.
Qed.

Unable to find an instance for the variable x, even with explicit instantiation

I'm currently working through the Logical Foundations book and I'm stuck on the last part of Exercise: 4 stars, advanced (subsequence) (subseq_trans).
Here is my definition for subseq:
Inductive subseq { X : Type } : list X -> list X -> Prop :=
| s1 : forall l, subseq [] l
| s2 : forall (x : X) (l l': list X), subseq l l' -> subseq l (x :: l')
| s3 : forall (x : X) (l l' : list X), subseq l l' -> subseq (x :: l) (x :: l').
And here is my proof for subseq_trans:
Theorem subseq_trans : forall (X : Type) (l1 l2 l3 : list X),
subseq l1 l2 -> subseq l2 l3 -> subseq l1 l3.
Proof.
intros X l1 l2 l3 H H'.
generalize dependent H.
generalize dependent l1.
induction H'.
{ intros l1 H. inversion H. apply s1. }
{ intros l1 H. apply s2. apply IHH'. apply H. }
{ intros l1 H. apply s2. apply IHH'. apply s2 in H. (* Unable to find an instance for the variable x. *) }
Here is the proof context before the failed apply:
1 subgoal
X : Type
x : X
l, l' : list X
H' : subseq l l'
IHH' : forall l1 : list X, subseq l1 l -> subseq l1 l'
l1 : list X
H : subseq l1 (x :: l)
______________________________________(1/1)
subseq l1 l
I have tried explicitly instantiating x like this:
apply s2 with (x:=x) in H
But that gives me:
No such bound variable x (possible names are: x0, l0 and l'0).
Thanks in advance.
As diagnosed by #tbrk, this is a renaming done by Coq in the presence of maximal implicit arguments (see this issue). This is due to the declaration of {X : Type} in the definition of subsequence.
One solution is to use # to turn all implicit arguments to non-implicit and avoid this renaming issue. This would give:
apply #s2 with (x:=x) in H.
You may find the eapply tactic useful to see what is going on.
...
{ intros l1 H. apply s2. apply IHH'. eapply s2 in H.
gives subseq l1 (?1 :: x :: l), where you can instantiate the ?1 with whatever you want, but, as you can now see, applying s2 forward from that assumption doesn't advance the proof.
Another possibility is to apply s2 to x and then to the assumption H:
apply (s2 x) in H.
I also find it strange that apply s2 with (x:=x) does not work. Coq seems to be doing some renaming behind the scenes, probably to avoid confusion with the x in the proof context. The following sequence applies without error:
rename x into y. apply s2 with (x:=y) in H.

How to prove theorems about recursive functions of ListMap in coq?

I'm trying to learn to use the ListMap module in Coq. I'm really not sure about proving properties about the keys or values in a ListMap, when the ListMap is created by a recursive function. I feel like I do not know what tactics to use.
(* Me proving statements about maps to understand how to use maps in Coq *)
Require Import FunInd.
Require Import Coq.Lists.List.
Require Import Coq.FSets.FMapInterface.
Require Import
Coq.FSets.FMapList
Coq.Structures.OrderedTypeEx.
Module Import MNat := FMapList.Make(Nat_as_OT).
Require Import
Coq.FSets.FMapFacts.
Definition NatToNat := MNat.t nat.
Definition NatToNatEmpty : NatToNat := MNat.empty nat.
(* We wish to show that map will have only positive values *)
Function insertNats (n: nat) (mm: NatToNat) {struct n}: NatToNat :=
match n with
| O => mm
| S (next) => insertNats next (MNat.add n n mm)
end.
Definition keys (mm: NatToNat) : list nat :=
List.map fst (elements mm).
(* vvvvv How do I prove this? Intuitively it is true *)
Example keys_nonnegative: forall (n: nat),
forall (k: nat),
List.In k (keys (insertNats n NatToNatEmpty)) -> k >= 0.
Proof.
intros n k in_proof.
induction n.
simpl in in_proof. tauto.
(* ??? NOW WHAT *)
Admitted.
Informally, the argument I would use for the below program is that because n >= 0 because it is a nat, the keys inserted into the map by idMapsGo will also always be non-negative.
I need to induct on n for keys_nonnegative. On the nth step, we add a key n, which will be non-negative (due to being a nat). The base case is trivial.
However, I am unable to convert this intuition into a Coq proof :)
You want to look at elements_in_iff and elements_mapsto_iff from Coq.FSets.FMapFacts.
Useful properties on keys:
Here are two useful properties on your definition of keys that might help you simplify your proofs. The code is taken from my own project Aniceto that includes helper properties on maps.
Definition keys {elt:Type} (m:t elt) : list key := fst (split (elements m)).
Fixpoint split_alt {A:Type} {B:Type} (l:list (A*B) %type) : (list A * list B) % type:=
match l with
| nil => (nil, nil)
| (x, y) :: l => (x :: (fst (split_alt l)), y :: (snd (split_alt l)))
end.
Lemma split_alt_spec:
forall {A:Type} {B:Type} (l:list (A*B) %type),
split l = split_alt l.
Proof.
intros.
induction l.
- auto.
- simpl. intuition.
rewrite IHl.
remember (split_alt l) as l'.
destruct l' as (lhs, rhs).
auto.
Qed.
Lemma in_fst_split:
forall {A:Type} {B:Type} (l:list (A*B)%type) (lhs:A),
List.In lhs (fst (split l)) ->
exists rhs, List.In (lhs, rhs) l.
Proof.
intros.
induction l.
{ inversion H. (* absurd *) }
destruct a.
rewrite split_alt_spec in H.
simpl in H.
destruct H.
+ subst.
eauto using in_eq.
+ rewrite <- split_alt_spec in H.
apply IHl in H; clear IHl.
destruct H as (r, Hin).
eauto using in_cons.
Qed.
Lemma in_elements_to_in:
forall {elt:Type} k e (m: t elt),
List.In (k, e) (elements m) ->
In k m.
Proof.
intros.
rewrite elements_in_iff.
exists e.
apply InA_altdef.
apply Exists_exists.
exists (k,e).
intuition.
unfold eq_key_elt.
intuition.
Qed.
Lemma keys_spec_1:
forall {elt:Type} (m:t elt) (k:key),
List.In k (keys m) -> In k m.
Proof.
intros.
unfold keys in *.
apply in_fst_split in H.
destruct H as (e, H).
apply in_elements_to_in with (e0:=e).
assumption.
Qed.
Lemma keys_spec_2:
forall {elt:Type} (m:t elt) (k:key),
In k m ->
exists k', E.eq k k' /\ List.In k' (keys m).
Proof.
intros.
unfold keys in *.
destruct H as (e, H).
apply maps_to_impl_in_elements in H.
destruct H as (k', (Heq, Hin)).
apply in_split_l in Hin.
exists k'.
intuition.
Qed.

How to use a custom induction principle in Coq?

I read that the induction principle for a type is just a theorem about a proposition P. So I constructed an induction principle for List based on the right (or reverse) list constructor .
Definition rcons {X:Type} (l:list X) (x:X) : list X :=
l ++ x::nil.
The induction principle itself is:
Definition true_for_nil {X:Type}(P:list X -> Prop) : Prop :=
P nil.
Definition true_for_list {X:Type} (P:list X -> Prop) : Prop :=
forall xs, P xs.
Definition preserved_by_rcons {X:Type} (P: list X -> Prop): Prop :=
forall xs' x, P xs' -> P (rcons xs' x).
Theorem list_ind_rcons:
forall {X:Type} (P:list X -> Prop),
true_for_nil P ->
preserved_by_rcons P ->
true_for_list P.
Proof. Admitted.
But now, I am having trouble using the theorem. I don't how to invoke it to achieve the same as the induction tactic.
For example, I tried:
Theorem rev_app_dist: forall {X} (l1 l2:list X), rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using list_ind_rcons.
But in the last line, I got:
Error: Cannot recognize an induction scheme.
What are the correct steps to define and apply a custom induction principle like list_ind_rcons?
Thanks
If one would like to preserve the intermediate definitions, then one could use the Section mechanism, like so:
Require Import Coq.Lists.List. Import ListNotations.
Definition rcons {X:Type} (l:list X) (x:X) : list X :=
l ++ [x].
Section custom_induction_principle.
Variable X : Type.
Variable P : list X -> Prop.
Hypothesis true_for_nil : P nil.
Hypothesis true_for_list : forall xs, P xs.
Hypothesis preserved_by_rcons : forall xs' x, P xs' -> P (rcons xs' x).
Fixpoint list_ind_rcons (xs : list X) : P xs. Admitted.
End custom_induction_principle.
Coq substitutes the definitions and list_ind_rcons has the needed type and induction ... using ... works:
Theorem rev_app_dist: forall {X} (l1 l2:list X),
rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using list_ind_rcons.
Abort.
By the way, this induction principle is present in the standard library (List module):
Coq < Check rev_ind.
rev_ind
: forall (A : Type) (P : list A -> Prop),
P [] ->
(forall (x : A) (l : list A), P l -> P (l ++ [x])) ->
forall l : list A, P l
What you did was mostly correct. The problem is that Coq has some trouble recognizing that what you wrote is an induction principle, because of the intermediate definitions. This, for instance, works just fine:
Theorem list_ind_rcons:
forall {X:Type} (P:list X -> Prop),
P nil ->
(forall x l, P l -> P (rcons l x)) ->
forall l, P l.
Proof. Admitted.
Theorem rev_app_dist: forall {X} (l1 l2:list X), rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof. intros X l1 l2.
induction l2 using #list_ind_rcons.
I don't know if Coq not being able to automatically unfold the intermediate definitions should be considered a bug or not, but at least there is a workaround.