ado when does it dispose? what happens when in the using i use a class member - ado.net

I have a porogram where I use m_sqlConnection as a class member
does
using (m_sqlConnection = new SqlConnection(sr_ConnectionString))
{
m_sqlConnection.Open();
} //dispose
similar to
using ( SqlConnection m_sqlConnection = new SqlConnection(sr_ConnectionString))
{
m_sqlConnection.Open();
}//dispose

Both will dispose the new SqlConnection.
In the second case, trying to call any method on m_sqlConnection (if not re-assigned) will throw an exception.
See using Statement on MSDN. There are several examples, including these cases.

Related

Can I keep Entity Framework context as class variable?

I'm used to working the database connections where you connect/open/close as fast as possible in each method. I'm now working with the Entity Framework and so my methods all do this type of thing:
using (var context = new FooEntities()) {
// linq to sql query here
}
I've been told that with Entity Framework I can actually have that context variable be a class level variable and not have to instantiate it in each method. Is that really the case, or should I continue this pattern in each method?
I'm using version 5.0.0 of the framework if that makes a difference.
It depends on how you are expecting it to act. The only reason you'd want it to stick around is if you wanted to use the caching feature of DbContext across multiple method calls. But since its pulling connections from the Pool anyway, disposing of a DbContext shouldn't really impact performance when creating a new one.
For me personally, I create the context as close as possible and kill it as soon as possible. Thus, the Get calls should use AsNoTracking() to speed up the calls a lot if you don't care about trying to update them later. You could also create a DbContextFactory so each class could control that interaction as it sees fit. (i.e. Method A always creates a new one, but Methods B and C could share if either one called first). Though, that could cause its own issues down the road, but then you can opt into those conditions.
You can have Context as a property of a class, but you have to consider how to control the disposing of the Context. For example:
public class UnitOfWork:IDisposable
{
public DbContext Context { get; set; }
public UnitOfWork()
{
Context = null; //initialize context here
}
public void DoWorkWithContext1()
{
//anything you need
}
public void DoWorkWithContext2()
{
//anything you need
}
public void Dispose()
{
if (Context != null)
Context.Dispose();
}
}
Then you'll use the class in this way:
using (var unit= new UnitOfWork())
{
unit.DoWorkWithContext1();
unit.DoWorkWithContext2();
}

In Symfony where should I put entity dependant functions

I have this code in my controller, it takes 'procedure_type' from the request and checks to see if a ProcedureType with that name exists. If it does it uses the object, if not it creates a new ProcedureType, then return the new object to use.
// Check the typed in ProcedureType against existing types.
$procedureTypes = $entityManager->getRepository('IncompassSurgeryBundle:ProcedureType')->findBy(array('name' => $request->request->get('procedure_type'), 'vendor' => $vendorId));
if (empty($procedureTypes)) {
// Create Procedure Type
$procedureType = new ProcedureType();
$procedureType->setVendor($vendor)
->setName($request->request->get('procedure_type'))
->setCreated(new \DateTime())
->setUpdated($procedureType->getCreated());
$entityManager->persist($procedureType);
} else {
$procedureType = $procedureTypes[0];
}
I don't think this is the best way to do this, I'd like to move the code into a function, say checkProcedureType(), but I don't know where the best place is to put that. I don't think it could go in the Entity or Repository classes, and moving it to a private function in the controller doesn't feel right.
I'm sure there is a class type that I'm not aware of, that extends the Entity. Or maybe I should just put these functions in my entity classes.
Service are the answer to almost everything in Symfony 2. Create a service like this :
namespace Your\Bundle\Service;
class ProcedureService // Call this the way you want
{
protected $entityManager;
public function __construct($entityManager)
{
$this->entityManager = $entityManager;
}
public function callMeTheWayYouWant($vendorId, $vendor)
{
// Check the typed in ProcedureType against existing types.
$procedureTypes = $this->entityManager->getRepository('IncompassSurgeryBundle:ProcedureType')->findBy(array('name' => $request->request->get('procedure_type'), 'vendor' => $vendorId));
if (empty($procedureTypes)) {
// Create Procedure Type
$procedureType = new ProcedureType();
$procedureType->setVendor($vendor)
->setName($request->request->get('procedure_type'))
->setCreated(new \DateTime())
->setUpdated($procedureType->getCreated());
$this->entityManager->persist($procedureType);
} else {
$procedureType = $procedureTypes[0];
}
// The rest of your code
}
}
In your services.yml file :
your_service:
class: Your\Bundle\Service\ProcedureService
arguments: [#doctrine.orm.entity_manager]
Then use it in your controller :
$this->get('your_service')->callMeTheWayYouWant($vendorId, $vendor);
If logic is somehow related to acessing database I always go for repository. However, if cases like yours, I tend to analyze it's dependency map.
Does your code repeats in some other method within same class, only?
If so, go for private method.
Is this part of code reused somewhere else but does not rely on some services?
You could externalize logic by creating separate class and static method which executes the code. Beware: Tends to get messy really quick
Finally, does your code rely on services/configuration?
Create a separate service, inject the services/configuration and invoke it's method. Adds a bit of overhead, if your abuse it, but you should be fine
Personally, in your example, I would go for private method, but that's just my opinion.

Should DBContext be globally defined or explicitly created every time?

I'm a SQL guy who's tinkering with Web API and Entity Framework 6 and I keep receiving the error "The operation cannot be completed because the DbContext has been disposed" when I my code is:
namespace DataAccessLayer.Controllers
{
public class CommonController : ApiController
{
[Route("CorrespondenceTypes")]
[HttpGet]
public IQueryable GetCorrespondenceTypes()
{
using (var coreDB = new coreEntities())
{
var correspondenceType = coreDB.tblCorrespondenceTypes.Select(cor => new { cor.CorrespondenceTypeName });
return correspondenceType;
}
}
}
}
But if change my code around a little and try this it works:
namespace DataAccessLayer.Controllers
{
public class CommonController : ApiController
{
readonly coreEntities coreDB = new coreEntities();
[Route("CorrespondenceTypes")]
[HttpGet]
public IQueryable GetCorrespondenceTypes()
{
var correspondenceType = coreDB.tblCorrespondenceTypes.Select(cor => new { cor.CorrespondenceTypeName });
return correspondenceType;
}
}
}
My question is why does the second one work but not the first? Is it better practice to have a global connection string or call DBContext explicitly each time?
Your are getting error because you are returning the IQueryable for which Entity framework has yet not executed the query and DbContext has been disposed when that query needs to be executed.
Remember Entity framework will not execute query until collection is initialized or any method that does not support deferred execution. Visit this link for list of Linq deferred execution supported method.
why does the second one work but not the first?
In first code snippet you are returning an instance of IQuerable which has not executed DbQuery and then after it just fires dispose on your context (coreDB). So then after whenever your code iterate over the collection it tries to fire DbQuery but finds that context has already been destroyed so you are getting an error.
In second case when ever you are iterating over the collection coreDB context must be alive so you are not getting an error.
Is it better practice to have a global connection string or call DBContext explicitly each time?
Answer to this question is based on developers taste or his own comforts. You can use your context wrapped within using statements as below:
public IList GetCorrespondenceTypes()
{
using (var coreDB = new coreEntities())
{
var correspondenceType = coreDB.tblCorrespondenceTypes.Select(cor => new { cor.CorrespondenceTypeName });
return correspondenceType.ToList();
}
}
As shown in above code snippet if you would use ToList before returning it would execute query before your coreDB got destroyed. In this case you will have to make sure that you returned materialized response (i.e. returned response after executing the DbQuery).
Note: I have noticed most of the people choose the second way. Which targets context as an instance field or property.

Nested DbContext due to method calls - Entity Framework

In the following case where two DbContexts are nested due to method calls:
public void Method_A() {
using (var db = new SomeDbContext()) {
//...do some work here
Method_B();
//...do some more work here
}
}
public void Method_B() {
using (var db = new SomeDbContext()) {
//...do some work
}
}
Question:
Will this nesting cause any issues? (and will the correct DbContext be disposed at the correct time?)
Is this nesting considered bad practice, should Method_A be refactored into:
public void Method_A() {
using (var db = new SomeDbContext()) {
//...do some work here
}
Method_B();
using (var db = new SomeDbContext()) {
//...do some more work here
}
}
Thanks.
Your DbContext derived class is actually managing at least three things for you here:
the metadata that describes your database and your entity model,
the underlying database connection, and
a client side "cache" of entities loaded using the context, for change tracking, relationship fixup, etc. (Note that although I term this a "cache" for want of a better word, this is generally short lived and is just to support EFs functionality. It's not a substitute for proper caching in your application if applicable.)
Entity Framework generally caches the metadata (item 1) so that it is shared by all context instances (or, at least, all instances that use the same connection string). So here that gives you no cause for concern.
As mentioned in other comments, your code results in using two database connections. This may or may not be a problem for you.
You also end up with two client caches (item 3). If you happen to load an entity from the outer context, then again from the inner context, you will have two copies of it in memory. This would definitely be confusing, and could lead to subtle bugs. This means that, if you don't want to use shared context objects, then your option 2 would probably be better than option 1.
If you are using transactions, there are further considerations. Having multiple database connections is likely to result in transactions being promoted to distributed transactions, which is probably not what you want. Since you didn't make any mention of db transactions, I won't go into this further here.
So, where does this leave you?
If you are using this pattern simply to avoid passing DbContext objects around in your code, then you would probably be better off refactoring MethodB to receive the context as a parameter. The question of how long-lived context objects should be comes up repeatedly. As a rule of thumb, create a new context for a single database operation or for a series of related database operations. (See, for example this blog post and this question.)
(As an alternative, you could add a constructor to your DbContext derived class that receives an existing connection. Then you could share the same connection between multiple contexts.)
One useful pattern is to write your own class that creates a context object and stores it as a private field or property. Then you make your class implement IDisposable and its Dispose() method disposes the context object. Your calling code news up an instance of your class, and doesn't have to worry about contexts or connections at all.
When might you need to have multiple contexts active at the same time?
This can be useful when you need to write code that is multi-threaded. A database connection is not thread-safe, so you must only ever access a connection (and therefore an EF context) from one thread at a time. If that is too restrictive, you need multiple connections (and contexts), one per thread. You might find this interesting.
You can alter your code by passing to Method_B the context. If you do so, the creation of the second db call SomeDbContext will not be necessary.
there a question an answer in stackoverflow in this link
Proper use of "Using" statement for datacontext
It is a bit late answer, but still people may be looking so here is another way.
Create class, that cares about disposing for you. In some scenarios, there would be a function usable from different places in solution. This way you avoid creating multiple instances of DbContext and you can use nested calls as many as you like.
Pasting simple example.
public class SomeContext : SomeDbContext
{
protected int UsingCount = 0;
public static SomeContext GetContext(SomeContext context)
{
if (context != null)
{
context.UsingCount++;
}
else
{
context = new SomeContext();
}
return context;
}
private SomeContext()
{
}
protected bool MyDisposing = true;
protected override void Dispose(bool disposing)
{
if (UsingCount == 0)
{
base.Dispose(MyDisposing);
MyDisposing = false;
}
else
{
UsingCount--;
}
}
public override int SaveChanges()
{
if (UsingCount == 0)
{
return base.SaveChanges();
}
else
{
return 0;
}
}
}
Example of usage
public class ExmapleNesting
{
public void MethodA()
{
using (var context = SomeContext.GetContext(null))
{
// manipulate, save it, just do not call Dispose on context in using
MethodB(context);
}
MethodB();
}
public void MethodB(SomeContext someContext = null)
{
using (var context = SomeContext.GetContext(someContext))
{
// manipulate, save it, just do not call Dispose on context in using
// Even more nested functions if you'd like
}
}
}
Simple and easy to use.
If you think number of connections to Database,and impact of times that new connections must be opened, not an important problem and you have no limitation for support your application to run at best performance, everything is OK.
Your code works well. Because create just a db context has a low impact in your performance,meta data will be cached after first loading, and connection to your database just occurs when the code need to execute a query. With liitle performance consideration and code design, I offer you to make context factory to have just an instance of each Db Context for each instance of your application.
You can take a look at this link for more performance considerations
http://msdn.microsoft.com/en-us/data/hh949853

EF 4.0 Dynamic Proxies POCO Object Does not match target type

I am using EF 4.0 and POCO's. I stumbled across this error while inserting to records into the data base.
Property accessor 'QualityReasonID' on object 'BI.Entities.QualityReason' threw the following exception:'Object does not match target type.'
There errors occur on the Databind to a GridView after saving a new record to the database. I identified what is happening but I am not sure WHY it is occurring or If I am using EF/POCO's incorrectly. Any insight would be appreciated.
The exception is occuring because the object types in the IEnumerable are not the same.
The orginal entrys in the table are of type System.Data.Entity.DynamicProxies.QualityReason_E483AD567288B459706092F1825F53B1F93C65C5329F8095DD1D848B5D039F04}
While the new one is BI.Entities.QuailtyReason.
Here is how I insert the new object.
public void createQualityReason(QualityReason qReasons)
{
dbcontext.QualityReasons.AddObject(qReasons);
dbcontext.SaveChanges();
}
I resolved the error by changing the fetch code from:
public IEnumerable<QualityReason> fetchQualityReasons()
{
IEnumerable<QualityReason> queryReasons = dbcontext.QualityReasons.AsEnumerable();
return queryReasons;
}
to
public IEnumerable<QualityReason> fetchQualityReasons()
{
IEnumerable<QualityReason> queryReasons = from data in dbcontext.QualityReasons.AsEnumerable()
select new QualityReason
{
QualityReasonID = data.QualityReasonID,
QualityReasonName = data.QualityReasonName
};
return queryReasons;
}
So to get around the error I have to select into the POCO class explicitly each time. This feels like I am going something wrong. Any thoughts?
The error is caused because GridView does not handle polymorphic datasources when using boundfields. So you have two options
Use TemplateFields instead which can handle polymorphic datasources, this may changing some of your front end code and GridView events.
Use Linq to create a non-polymorphic databsource that the boundfields can handle
So instead of using something like ti
gvGroups.DataSource = ProductHelper.Get()
gvGroups.DataBind();
var query = from p in ProductHelper.Get()
select new {p.ProductId, p.ProductName, p.ProductDesc, p.ProductLink};
gvGroups.DataSource = query;
gvGroups.DataBind();
I don't know if the problem has been solved yet, but I've had the same problem with my (POCO) "Scenario" class.
The problem disappeared when using a context.CreateObject<Scenario> to create the (POCO) object i.s.o. a .... = new Scenario().
Faced the same issue today and used Value Injecter to solve it. It's as simple as:
var dynamicProxyMember = _repository.FindOne<Member>(m=>m.Id = 1);
var member = new Member().InjectFrom(dynamicProxyMember) as Member;
That's it :)