Alternative for DWORD in Objective C - iphone

I am trying opening a audio file (.wav) and retrieve the raw data. I got the below code from the link. When I am trying to implement the code DWORD is not supported in Objective c.
How can I implement this?
FILE *fp;
fp = fopen("sound.wav","rb");
if (fp)
{
BYTE id[4]; //four bytes to hold 'RIFF'
DWORD size; //32 bit value to hold file size
fread(id,sizeof(BYTE),4,fp); //read in first four bytes
if (!strcmp(id,"RIFF"))
{ //we had 'RIFF' let's continue
fread(size,sizeof(DWORD),1,fp);
//read in 32bit size value
}
}

You could use any 32-bit unsigned integer value for DWORD, e.g. uint32_t.
#include <stdint.h>
typedef uint32_t DWORD;
...

Related

In DPI-C, How to map data type to reg or wire

I am writing a CRC16 function in C to use in System Verilog.
Requirement as below:
Output of CRC16 has 16 bits
Input of CRC16 has bigger than 72 bits
The difficulty is that I don't know whether DPI-C can support map data type with reg/wire in System Verilog to C or not ?
how many maximum length of reg/wire can support to use DPI-C.
Can anybody help me ?
Stay with compatible types across the language boundaries. For output use shortint For input, use an array of byte in SystemVerilog which maps to array of char in C.
Dpi support has provision for any bit width, converting packed arrays into c-arrays. The question is: what are you going to do with 72-bit data at c side?
But, svBitVecVal for two-state bits and svLogicVecVal for four-stat logics could be used at 'c' side to retrieve values. Look at H.7.6/7 of lrm for more info.
Here is an example from lrm H.10.2 for 4-state data (logic):
SystemVerilog:
typedef struct {int x; int y;} pair;
import "DPI-C" function void f1(input int i1, pair i2, output logic [63:0] o3);
C:
void f1(const int i1, const pair *i2, svLogicVecVal* o3)
{
int tab[8];
printf("%d\n", i1);
o3[0].aval = i2->x;
o3[0].bval = 0;
o3[1].aval = i2->y;
o3[1].b = 0;
...
}

How can I make a good hash function without unsigned integers?

I'm looking for a simple hash function that doesn't rely on integer overflow, and doesn't rely on unsigned integers.
The problem is that I have to create the hash function in blueprint from Unreal Engine (only has signed 32 bit integer, with undefined overflow behavior) and in PHP5, with a version that uses 64 bit signed integers.
So when I use the 'common' simple hash functions, they don't give the same result on both platforms because they all rely on bit-overflowing behavior of unsigned integers.
The only thing that is really important is that is has good 'randomness'. Does anyone know something simple that would accomplish this?
It's meant for a very basic signing symstem for sending messages to a server. Doesn't need to be top security... it's for storing high scores of a simple game on a server. The idea is that I would generate several hash-integers from the message (using different 'start numbers') and append them to make a hash-signature ). I just need to make sure that if people sniff the network messages send to the server that they cannot easily send faked messages. They would need to provide the correct hash-signature with their message, which they shouldn't be able to do unless they know the hash function being used. Ofcourse if they reverse engineer the game they can still 'hack' it, but I wouldn't know how to counter that...
I have no access to existing hash functions in the unreal engine blueprint system.
The first thing I would try would be to simulate the behavior of unsigned integers using signed integers, by explicitly applying the modulo operator whenever the accumulated hash-value gets large enough that it might risk overflowing.
Example code in C (apologies for the poor hash function, but the same technique should be applicable to any hash function, at least in principle):
#include <stdio.h>
#include <string.h>
int hashFunction(const char * buf, int numBytes)
{
const int multiplier = 33;
const int maxAllowedValue = 2147483648-256; // assuming 32-bit ints here
const int maxPreMultValue = maxAllowedValue/multiplier;
int hash = 536870912; // arbitrary starting number
for (int i=0; i<numBytes; i++)
{
hash = hash % maxPreMultValue; // make sure hash cannot overflow in the next operation!
hash = (hash*multiplier)+buf[i];
}
return hash;
}
int main(int argc, char ** argv)
{
while(1)
{
printf("Enter a string to hash:\n");
char buf[1024]; fgets(buf, sizeof(buf), stdin);
printf("Hash code for that string is: %i\n", hashFunction(buf, strlen(buf)));
}
}

How to hash with ed25519-donna

I apologize for asking somewhat of a programming question, but I want to be sure I'm properly using this library cryptographically.
I have managed to implement ed25519-donna except for hashing the data for a signature.
As far as I can tell, this is the function that hashes data:
void ed25519_hash(uint8_t *hash, const uint8_t *in, size_t inlen);
but I can't figure out what *hash is. I'm fairly certain that *in and inlen are the data to be hashed and its length.
Is it something specific to SHA512?
How can one hash with ed25519-donna?
Program hangs
I've compiled with ed25519-donna-master/ed25519.o and the OpenSSL flags -lssl -lcrypto. The key generation, signing, and verification functions work as expected.
It's running without error, but the application hangs on these lines, and the cores are not running at 100%, so I don't think it's busy processing:
extern "C"
{
#include "ed25519-donna-master/ed25519.h"
#include "ed25519-donna-master/ed25519-hash.h"
}
#include <openssl/rand.h>
unsigned char* hash;
const unsigned char* in = convertStringToUnsignedCharStar( myString );
std::cout << in << std::endl;
std::cout << "this is the last portion output and 'in' outputs correctly" << std::endl;
ed25519_hash(hash, in, sizeof(in) );
std::cout << hash << std::endl;
std::cout << "this is never output" << std::endl;
How can this code be modified so that ed25519_hash can function? It works the same way regardless of whether hash and in are unsigned char* or uint8_t*s.
For uint8_t*, I used this code:
uint8_t* hash;
const uint8_t* in = reinterpret_cast<const uint8_t*>(myString.c_str());
“…but I can't figure out what *hash is.”
That uint8_t *hash is the buffer (unsigned char*) that will contain the resulting hash after you called the function.
So, you're looking at a function that expects 3 parameters (also known as arguments):
an uint8_t * buffer to hold the resulting hash,
the input data to be hashed,
the length of the input data to be hashed.
“Is it something specific to SHA512?”
Nope, it's regular C source. But I think you’re a bit confused by the documentation. It states…
If you are not compiling against OpenSSL, you will need a hash function.
…
To use a custom hash function, use -DED25519_CUSTOMHASH
when compiling ed25519.c and put your custom hash implementation
in ed25519-hash-custom.h. The hash must have a 512bit digest and
implement
…
void ed25519_hash(uint8_t *hash, const uint8_t *in, size_t inlen);
So, unless you are not compiling against OpenSSL and implementing your own hash function, you won't be needing this function. Looking at your code, you are compiling against OpenSSL, which means you're playing with the wrong function.
“How can one hash with ed25519-donna?”
By using the provided functionality the library offers.
Your question makes me wonder if you scrolled down to the “Usage” part of the readme, because it completely answers your question and tells you what functions to use.
For your convenience, let me point you to the part of the documentation you need to follow and where you find the functions you need to hash, sign, verify etc. using ed25519-donna:
To use the code, link against ed25519.o -mbits and:
#include "ed25519.h"
Add -lssl -lcrypto when using OpenSSL (Some systems don't
need -lcrypto? It might be trial and error).
To generate a private key, simply generate 32 bytes from a secure cryptographic source:
ed25519_secret_key sk;
randombytes(sk, sizeof(ed25519_secret_key));
To generate a public key:
ed25519_public_key pk;
ed25519_publickey(sk, pk);
To sign a message:
ed25519_signature sig;
ed25519_sign(message, message_len, sk, pk, signature);
To verify a signature:
int valid = ed25519_sign_open(message, message_len, pk, signature) == 0;
To batch verify signatures:
const unsigned char *mp[num] = {message1, message2..}
size_t ml[num] = {message_len1, message_len2..}
const unsigned char *pkp[num] = {pk1, pk2..}
const unsigned char *sigp[num] = {signature1, signature2..}
int valid[num]
/* valid[i] will be set to 1 if the individual signature was valid, 0 otherwise */
int all_valid = ed25519_sign_open_batch(mp, ml, pkp, sigp, num, valid) == 0;
…
As you see, it's all in there… just follow the documentation.

Can ancillary data be portably allocated?

IEEE Std 1003.1-2008's <sys/socket.h> section doesn't provide the CMSG_SPACE or CMSG_LEN macros, and instead merely says:
Ancillary data consists of a sequence of pairs, each consisting of a
cmsghdr structure followed by a data array.
Is there a portable way to allocate ancillary data without CMSG_SPACE, or to attach ancillary data to a message without CMSG_LEN? That quote suggests to me that a single buffer with size (sizeof(struct cmsghdr)+ sizeof data)*nr_of_pairs (where data may change per pair, of course), with each individual cmgshdr.cmsglen = sizeof(struct cmsghdr) + sizeof data and msg.msg_controllen = (sizeof(struct cmsghdr)+ sizeof data)*nr_of_pairs, but all of the system-specific documentation for CMSG_SPACE/CMSG_LEN suggests that there are alignment issues that may get in the way of this.
OK, so from what I can tell my guess as to how to allocate wouldn't work in general (I couldn't get it to work on Linux, I had to use CMSG_SPACE/CMSG_LEN instead). Based on the diagram in section 4.2 of rfc2292, I came up with the following definitions for CMSG_SPACE and CMSG_LEN that I think should be portable to conforming implementations of IEEE Std 1003.1-2008:
#include <stddef.h>
#include <sys/socket.h>
#ifndef CMSG_LEN
socklen_t CMSG_LEN(size_t len) {
return (CMSG_DATA((struct cmsghdr *) NULL) - (unsigned char *) NULL) + len;
}
#endif
#ifndef CMSG_SPACE
socklen_t CMSG_SPACE(size_t len) {
struct msghdr msg;
struct cmsghdr cmsg;
msg.msg_control = &cmsg;
msg.msg_controllen = ~0ULL; /* To maximize the chance that CMSG_NXTHDR won't return NULL */
cmsg.cmsg_len = CMSG_LEN(len);
return (unsigned char *) CMSG_NXTHDR(&msg, &cmsg) - (unsigned char *) &cmsg;
}
#endif
Obvously this should be done with macros, but I think this shows the idea. This seems really hacky to me and, due to possible size checks in CMSG_NXTHDR, can't be shoved into a compile-time constant, so probably the next version of POSIX should define CMSG_SPACE and CMSG_LEN since any program using ancillary data has to use them anyway.

Using memcpy/memset

When using memset or memcpy within an Obj-C program, will the compiler optimise the setting (memset) or copying (memcpy) of data into 32-bit writes or will it do it byte by byte?
You can see the libc implementations of these methods in the Darwin source. In 10.6.3, memset works at the word level. I didn't check memcpy, but probably it's the same.
You are correct that it's possible for the compiler to do the work inline instead of calling these functions. I suppose I'll let someone who knows better answer what it will do, though I would not expect a problem.
Memset will come as part of your standard C library so it depends on the implementation you are using. I would guess most implementations will copy in blocks of the native CPU size (32/64 bits) and then the remainder byte-by-byte.
Here is glibc's version of memcpy for an example implementation:
void *
memcpy (dstpp, srcpp, len)
void *dstpp;
const void *srcpp;
size_t len;
{
unsigned long int dstp = (long int) dstpp;
unsigned long int srcp = (long int) srcpp;
/* Copy from the beginning to the end. */
/* If there not too few bytes to copy, use word copy. */
if (len >= OP_T_THRES)
{
/* Copy just a few bytes to make DSTP aligned. */
len -= (-dstp) % OPSIZ;
BYTE_COPY_FWD (dstp, srcp, (-dstp) % OPSIZ);
/* Copy whole pages from SRCP to DSTP by virtual address manipulation,
as much as possible. */
PAGE_COPY_FWD_MAYBE (dstp, srcp, len, len);
/* Copy from SRCP to DSTP taking advantage of the known alignment of
DSTP. Number of bytes remaining is put in the third argument,
i.e. in LEN. This number may vary from machine to machine. */
WORD_COPY_FWD (dstp, srcp, len, len);
/* Fall out and copy the tail. */
}
/* There are just a few bytes to copy. Use byte memory operations. */
BYTE_COPY_FWD (dstp, srcp, len);
return dstpp;
}
So you can see it copies a few bytes first to get aligned, then copies in words, then finally in bytes again. It does some optimized page copying using some kernel operations.