Releasing an object but still able to use it - iphone

I had understood that once you release an object, you shouldn't use it as it will cause an error since it is not in memory anymore.
But reading thru this Apple guide, I found this code, and have also seen it before, but I would just move the [object release] to the end of my code, so as to avoid getting an error. But it seems that it is accepted and works. So, why does this work? How can it keep setting variables to dateAttribute after it's been released?
(Line 3 is the one in question):
NSMutableArray *runProperties = [NSMutableArray array];
NSAttributeDescription *dateAttribute = [[NSAttributeDescription alloc] init];
[runProperties addObject:dateAttribute];
[dateAttribute release];
[dateAttribute setName:#"date"];
[dateAttribute setAttributeType:NSDateAttributeType];
[dateAttribute setOptional:NO];
Got it from here: Creating a managed object model in code

There are few points we should discuss.
release does not always make the object deallocated. The object will be deallocated only at the "last" release, i.e. when the retain count drop to zero.
Despite of that, it is still hold true that you should not use the object after you release it, because it is possible that it might be deallocated already.
The NSMutableArray will retain the object until it is removed from the array, or the array itself be allocated.
The example take the advantage that the array will retain the reference when added, so the reference will not be deallocated yet after releasing dateAttribute. However, this is not a good style because its validity depends solely on the nature of the class NSMutableArray itself, and it breaks common rule that we should not use released reference.

Technically, this is bad style, however it does work.
NSMutableArray (the runProperties addObject) calls retain on the dateAttribute. Therefore, calling release does not destroy the dateAttribute (there is still one reference).
For readability and refactoring reasons, I would also place the call to release last.

Related

Memory Leaks in Objective-C / Arrays

I'm looking at someone's code and I know the general rule is if you have alloc/init, you need to release that memory. He uses a lot of NSMutableArrays, alloc/inits them, but does not release them. Can I simply send the autorelease message to the array that gets created if I do not see any other release/autorelease message getting sent to that array? I basically don't want to get his code to crash and stop working either :P.
With NSMutableArrays, when you send the message addObject and the object in that array increases its retain account, if that array gets released, but the object never gets sent a release or removeObject from the array, is that also a memory leak? Thanks.
You need to either -release or -autorelease anything you -retain, +alloc, -copy, +allocWithZone: or -copyWithZone:. (And, if you retain something twice you also need to release it twice.)
When an NSMutableArray (or NSArray, NSSet, or NSDictionary and mutable subclasses) object is dealloc'd (retain count reaches zero), it releases anything it contains. When you add an object to an NSMutableArray, the array retains the object (it does not copy it like some people claim).
I highly recommend the Memory Management Programming Guide to both you and the someone you referred to in the question.
I hope this answer helps you and someone. Good luck. :)
Also, enable the Clang Static Analyser in the build settings. This will tell you at compile time when a leak is going to happen (and much, much more). In fact, it's the first thing I always do when I start a new project. The analyzer never lied to me.
NSArray and NSMutableArray release all of their objects when they are destroyed, so if the array is managed properly with retain and release (or autorelease) the objects within will not be leaked. But if there are arrays that are never released, they will leak, along with everything inside them.
Without seeing the code, it's hard to advocate for just adding autoreleases everywhere, but for arrays that are used only in the context of a single function (and not assigned to ivars or static variables), the answer is yes, they should be autoreleased. Or more idiomatically, create them with methods like +arrayWithCapacity, which returns an object that has already been added to the autorelease pool.
It is general practice to release all the objects you initialize. But in your case, releasing the array should release all objects as well.
But it all depends on how you are using your objects !!!

iPhone object checking to release

I want to check if an object has some count or not Here is my testing code
NSMutableArray *array=[[NSMutableArray alloc]init];
if(array)
{
NSLog(#"hiiiiiii");
}
CASE-2
NSMutableArray *array=[[NSMutableArray alloc]init];
[array release];
if(array)
{
NSLog(#"hiiiiiii");
}
Here in both cases i got same output as printed "hiiiiiii".
Can anyone tell me how will i check if my object need to release or already released.
I know that i should have track of my object's counters but i am at a stage where my code is too much complexed and i need help..
Please help..
ALso tell that how much memory leak is allowed by apple?
There is no way to check if you "should" release an object. Doing something like "if(object)" only checks the pointer to the object. It will return true even if the object it was pointing to was destroyed a long time ago. This is what happens in your second case. The object is destroyed when you call release, but the pointer is still pointing at something, so it returns true. It will only return false if the pointer is set to nil.
However, there is a simple set of rules for calling release. If you ever call "alloc", "new", "copy", "mutableCopy" or "retain" on object, you must always call "release" or "autorelease" on it. That will prevent any memory leaks.
Apple does not have a publicized amount of memory leaks allowed. It is always safest to eliminate any known memory leaks; plus, it will mean better performance for your customers.
In your second case you are releasing the NSMutableArray but still it store a non zero value although it's no longer for use (To call function OR fetch value).That the reason your if condition got true.
Just remember whenever you call release on any object, Do'nt forget to assign nil to that, So your second code should look like below.
CASE-2
NSMutableArray *array=[[NSMutableArray alloc]init];
[array release];
array = nil;
if(array)
{
NSLog(#"hiiiiiii");
}
There is a simple rule of memory management in Object-C if your alloced or retain any object you must call release on that,
Read memory management Guide from Apple.

How do memory management properties affect cells of an array?

In my iPhone development book, I'm seeing some strange coding examples in regard to what an array does when objects are added to the array and when the whole array is released. One code example has the following properties on an instance array:
#property (nonatomic, retain) NSMutableArray* myArray;
The author adds an object to the array and, immediately after, releases his pointer to the object. Won't the array cell now point to garbage data? Unless, behind the scenes, the array cell retains the object when added.
SomeObject* someObject = [[SomeObject alloc] init];
[self.myArray addObject:someObject];
[someObject release];
The author also releases the the pointer to the array without first going through each array cell and releasing the individual objects. This is a memory leak unless, behind the scenes, each cell is sent a release message;.
- (void)viewDidUnload {
self.myArray = nil;
[super viewDidUnload];
}
Unless, behind the scenes, the array cell retains the object when added.
Yes, this happens.
... unless, behind the scenes, each cell is sent a release message.
This also happens.
You have answered your own question.
Here is a quote from Collections Programming Topics:
And when you add an object to an
NSMutableArray object, the object
isn’t copied, (unless you pass YES as
the argument to
initWithArray:copyItems:). Rather, an
object is added directly to an array.
In a managed memory environment, an
object receives a retain message when
it’s added; in a garbage collected
environment, it is strongly
referenced. When an array is
deallocated in a managed memory
environment, each element is sent a
release message.
Unlike in C or C++ where you constantly worry about whether to delete an object or not for the fear of it is still being used somewhere else, Objective-C (or rather it's actually Cocoa SDK) uses the mechanism of reference counting or ownership.
You might already know how it works but you need to also know that in Cocoa, if an object A needs to use another object B it should own (i.e. retain) it. That object A should not rely on some other object C already retained B, because it cannot know when C releases it. So in your case, since NSArray needs to use all objects added to it latter during its lifetime, it needs to retain all the objects. And because of that, when the array is de-alloc-ed, it needs to release them.
This concept of "you need to retain what you want to use latter" is very important when you are dealing of lots of objects.
There are several places in apple development guides that explain that is a good practice to take the ownership of an object (send a retain message) if you plan to use it later. You should do it so that the object is not destroyed while you still might need to access it.
Considering that, you were right assuming that the NSArray retains the object when it is added to the collection, as it still might try to access it afterwards.
You can check the Memory Management Programming Guide
When you add an object to a collection such as an array, dictionary, or set, the collection takes ownership of it.
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmPractical.html#//apple_ref/doc/uid/TP40004447-SW3
or the Collections Programming Topics for more details
... In a managed memory environment, an object receives a retain message when it’s added.
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Collections/Articles/Arrays.html#//apple_ref/doc/uid/20000132-SW1
You're right on the first point. When an object is added to an array, the array retains the object. Thus, for an object that has been previously retained, it is necessary to release it after adding it to the array or you can end up with a memory leak.
Likewise, when an object is removed
from an array, the array releases the
object. So, if you want to keep it,
you'll need to retain it.
When an array is released, as you
surmised, the array will release all
the objects it contains. Thus,
releasing each object individually is
not necessary and, in fact, would
raise an exception.
Finally, regarding the line of code
in -viewDidUnload that you quoted:
self.myArray = nil;
This works properly with regard to memory management as long as the myArray property was synthesized as follows:
#synthesize myArray;
Synthesizing creates a setter that effectively does the following:
- (void)setMyArray(NSMutableArray *)anArray
{
if (![myArray isEqual:anArray]) {
[myArray release];
myArray = anArray;
[myArray retain];
}
}
So, when called, the above setter will first release the old array (as long as it's not the same object as the new array.) Then, it will retain the new array, which in this case is nil. Note that retaining nil will just do nothing, and won't trigger an error.
Of course, if you don't synthesize the myArray property, or if you override the setter, you will have memory problems unless you also release the old value & retain the new in your setter.

Is release without prior retain dangerous?

I have some code which I think has extra release statements.
Is the code incorrect?
What is the end result?
I don't understand memory management well yet - even after reading lots of articles and stackoverflow answers. Thanks for straightening me out.
Update: The attached snippet works fine, but other code has the over-release problem
NSMutableArray *points = [NSMutableArray new];
for (Segment *s in currentWorkout.segments) {
[points addObjectsFromArray:[s.track locationPoints]];
}
[routeMap update:points];
[points release];
Your code is correct, but inadvisable. new acts as an implied alloc, which creates the object with a retain count of 1.
I think the last time I used new was in 1992; it's not wrong, but alloc/init is considered better practice, because it is clearer what you are doing. Please read Apple's guide to memory management, it is a comprehensive summary of the situation.
No messages can safely be sent to a deallocated object. Once an object has been released a sufficient number of times, it's deallocated. Any further messages sent to that object are going to an object that isn't there anymore. The precise result isn't completely predictable, but it usually ends in a crash. If you're less lucky, it could end in much stranger ways — for example, you could theoretically wind up with an Object A getting dealloced early and Object B allocated in the same memory location, then Object B receiving messages meant for Object A that Object B does understand but isn't supposed to receive at that time.
Basically, follow the rules. Think of it in terms of ownership. If you've claimed ownership, you need to release that ownership. If you don't own the object, you must not release it.
Take a look at this article online: http://weblog.bignerdranch.com/?p=2 .
It seems to imply that calls to release without a corresponding preior call to retain will result in a BAD_ACCESS error.
A short answer is, if you increasing the retain count of an object and you no longer are using it you should release it, otherwise you shouldnt...
So when ever you do a [objectName alloc] you are increasing the count by 1, when you use such methods as [NSString stringWithString:] these methods return an autoreleased object so you dont need to release it...if you instead did something like [[NSString stringWithString:]retain] then you are increasing the strings retain count and you should release it after you are done using it.
Im not too sure if new increases the reference count (i suspect that it would), you can always check your retain count by doing [object retainCount]... though note that even if the retain count is greater than 0, it does not mean you need to release the object, because some other class might have a reference to the object and therefore has its retain count increased by one and its the responsibility of the other class holding the reference to release it.
Hope this helps
you should use:
NSMutableArray *points = [[NSMutableArray alloc] init];
[...]
[routeMap update:points]; //if routemap stores the points, it will need it's own release retain
[points release]; //if there is a retain in the method above, reference will not be cleared
if unsure, use the build->analyze command, it will search your code for leaked references
you can get the official memory management guide from https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html

Which iPhone OS memory management rules and how-to's do you know?

Currently I am jumping into the ice cold water called "memory management in iPhone OS".
Here's one rule i've learned:
Every time I see an alloc in my method, I will release that corresponding variable at the bottom of the method.
Every time I create an #property(...) in my header file which says copy or retain, I put a release message on that variable into the dealloc method.
Every time I have an IBOutlet, I do the same thing. Only exception: If the IBOutlet has something like #property(... assign), or in other words: If it has the assign keyword at all. Then I don't care about releasing it in the dealloc method.
I feel that there are many more good rules to know! Just write down what you have. Let's scrape them all together. Links to great descriptions are welcome, too.
Actually, any time you initialize an object and the method name includes "init" you are responsible for releasing it. If you create an object using a Class method that does not include the word "init" then you don't.
For example:
NSString *person = [NSString stringWithFormat:"My name is %#", name];
does not need a release. But:
Person *person = [[Person alloc] init];
needs a release (as you stated in your question). Likewise:
Person *person = [[Person alloc] initWithName:#"Matt"]];
also needs a release.
This is a convention, not a rule of the language, but you will find that it is true for all Apple-supplied APIs.
The rules I use
Release all objects you create using a method whose name begins "alloc" or "new" or contains "copy".
Release all objects you retain.
Do not release objects created using a +className convenience constructor. (The class creates it and is responsible for releasing it.)
Do not release objects you receive in other ways E.g.
mySprockets = [widget sprockets];
If you store an object you receive in an instance variable, retain it or copy it. (Unless it's a weak reference - just a pointer to another object, usually to avoid cyclical references.)
Received objects are valid within the method they are received in (generally) and are also valid if passed back to the invoker.
Some good links:
http://www.gehacktes.net/2009/02/iphone-programming-part-2-objective-c-memory-management/
http://mauvilasoftware.com/iphone_software_development/2008/01/iphone-memory-management-a-bri.html
Memory management can seem daunting when you're seeing segfaults spring from every seeming innocent line of code, but it's actually pretty easy once you get the hang of it. Spend a little time reading this page and then Apple's documentation, and you should be writing bug-free code in no time.
I tend to create only autoreleased objects, either by using a class method or by autoreleasing it immediately after creation, unless I can state a reason not to. For example:
I am assigning it to a member variable because I intend to hold onto it for a while.
I am only creating it to pass it on immediately to another method, and I send it a release message right after that method call.
For performance reasons, I need to free that memory before the nearest NSAutoreleasePool will be released, such as creating a large number of objects inside a loop or the objects are holding onto a large amount of data (e.g., images).
That way, I am less likely to leak objects. By default, I create them autoreleased, and when I make the deliberate decision not to autorelease them, I am immediately faced with the question of where they will be released.
For object properties, rather than releasing them in my dealloc method, I like to assign nil to them. That way, retained or copied properties are sent a release, while assigned properties are simply overwritten, and I don't have to update my dealloc method if I change the property to/from retained.