Related
I have a vector of numbers (temperatures), and I am using the MATLAB function mink to extract the 5 smallest numbers from the vector to form a new variable. However, the numbers extracted using mink are automatically ordered from lowest to largest (of those 5 numbers). Ideally, I would like to retain the sequence of the numbers as they are arranged in the original vector. I hope my problem is easy to understand. I appreciate any advice.
The function mink that you use was introduced in MATLAB 2017b. It has (as Andras Deak mentioned) two output arguments:
[B,I] = mink(A,k);
The second output argument are the indices, such that B == A(I).
To obtain the set B but sorted as they appear in A, simply sort the vector of indices I:
B = A(sort(I));
For example:
>> A = [5,7,3,1,9,4,6];
>> [~,I] = mink(A,3);
>> A(sort(I))
ans =
3 1 4
For older versions of MATLAB, it is possible to reproduce mink using sort:
function [B,I] = mink(A,k)
[B,I] = sort(A);
B = B(1:k);
I = I(1:k);
Note that, in the above, you don't need the B output, your ordered_mink can be written as follows
function B = ordered_mink(A,k)
[~,I] = sort(A);
B = A(sort(I(1:k)));
Note: This solution assumes A is a vector. For matrix A, see Andras' answer, which he wrote up at the same time as this one.
First you'll need the corresponding indices for the extracted values from mink using its two-output form:
[vals, inds] = mink(array);
Then you only need to order the items in val according to increasing indices in inds. There are multiple ways to do this, but they all revolve around sorting inds and using the corresponding order on vals. The simplest way is to put these vectors into a matrix and sort the rows:
sorted_rows = sortrows([inds, vals]); % sort on indices
and then just extract the corresponding column
reordered_vals = sorted_rows(:,2); % items now ordered as they appear in "array"
A less straightforward possibility for doing the sorting after the above call to mink is to take the sorting order of inds and use its inverse to reverse-sort vals:
reverse_inds = inds; % just allocation, really
reverse_inds(inds) = 1:numel(inds); % contruct reverse permutation
reordered_vals = vals(reverse_inds); % should be the same as previously
You can apply a function to every item in a vector by saying, for example, v + 1, or you can use the function arrayfun. How can I do it for every row/column of a matrix without using a for loop?
Many built-in operations like sum and prod are already able to operate across rows or columns, so you may be able to refactor the function you are applying to take advantage of this.
If that's not a viable option, one way to do it is to collect the rows or columns into cells using mat2cell or num2cell, then use cellfun to operate on the resulting cell array.
As an example, let's say you want to sum the columns of a matrix M. You can do this simply using sum:
M = magic(10); %# A 10-by-10 matrix
columnSums = sum(M, 1); %# A 1-by-10 vector of sums for each column
And here is how you would do this using the more complicated num2cell/cellfun option:
M = magic(10); %# A 10-by-10 matrix
C = num2cell(M, 1); %# Collect the columns into cells
columnSums = cellfun(#sum, C); %# A 1-by-10 vector of sums for each cell
You may want the more obscure Matlab function bsxfun. From the Matlab documentation, bsxfun "applies the element-by-element binary operation specified by the function handle fun to arrays A and B, with singleton expansion enabled."
#gnovice stated above that sum and other basic functions already operate on the first non-singleton dimension (i.e., rows if there's more than one row, columns if there's only one row, or higher dimensions if the lower dimensions all have size==1). However, bsxfun works for any function, including (and especially) user-defined functions.
For example, let's say you have a matrix A and a row vector B. E.g., let's say:
A = [1 2 3;
4 5 6;
7 8 9]
B = [0 1 2]
You want a function power_by_col which returns in a vector C all the elements in A to the power of the corresponding column of B.
From the above example, C is a 3x3 matrix:
C = [1^0 2^1 3^2;
4^0 5^1 6^2;
7^0 8^1 9^2]
i.e.,
C = [1 2 9;
1 5 36;
1 8 81]
You could do this the brute force way using repmat:
C = A.^repmat(B, size(A, 1), 1)
Or you could do this the classy way using bsxfun, which internally takes care of the repmat step:
C = bsxfun(#(x,y) x.^y, A, B)
So bsxfun saves you some steps (you don't need to explicitly calculate the dimensions of A). However, in some informal tests of mine, it turns out that repmat is roughly twice as fast if the function to be applied (like my power function, above) is simple. So you'll need to choose whether you want simplicity or speed.
I can't comment on how efficient this is, but here's a solution:
applyToGivenRow = #(func, matrix) #(row) func(matrix(row, :))
applyToRows = #(func, matrix) arrayfun(applyToGivenRow(func, matrix), 1:size(matrix,1))'
% Example
myMx = [1 2 3; 4 5 6; 7 8 9];
myFunc = #sum;
applyToRows(myFunc, myMx)
Building on Alex's answer, here is a more generic function:
applyToGivenRow = #(func, matrix) #(row) func(matrix(row, :));
newApplyToRows = #(func, matrix) arrayfun(applyToGivenRow(func, matrix), 1:size(matrix,1), 'UniformOutput', false)';
takeAll = #(x) reshape([x{:}], size(x{1},2), size(x,1))';
genericApplyToRows = #(func, matrix) takeAll(newApplyToRows(func, matrix));
Here is a comparison between the two functions:
>> % Example
myMx = [1 2 3; 4 5 6; 7 8 9];
myFunc = #(x) [mean(x), std(x), sum(x), length(x)];
>> genericApplyToRows(myFunc, myMx)
ans =
2 1 6 3
5 1 15 3
8 1 24 3
>> applyToRows(myFunc, myMx)
??? Error using ==> arrayfun
Non-scalar in Uniform output, at index 1, output 1.
Set 'UniformOutput' to false.
Error in ==> #(func,matrix)arrayfun(applyToGivenRow(func,matrix),1:size(matrix,1))'
For completeness/interest I'd like to add that matlab does have a function that allows you to operate on data per-row rather than per-element. It is called rowfun (http://www.mathworks.se/help/matlab/ref/rowfun.html), but the only "problem" is that it operates on tables (http://www.mathworks.se/help/matlab/ref/table.html) rather than matrices.
Adding to the evolving nature of the answer to this question, starting with r2016b, MATLAB will implicitly expand singleton dimensions, removing the need for bsxfun in many cases.
From the r2016b release notes:
Implicit Expansion: Apply element-wise operations and functions to arrays with automatic expansion of dimensions of length 1
Implicit expansion is a generalization of scalar expansion. With
scalar expansion, a scalar expands to be the same size as another
array to facilitate element-wise operations. With implicit expansion,
the element-wise operators and functions listed here can implicitly
expand their inputs to be the same size, as long as the arrays have
compatible sizes. Two arrays have compatible sizes if, for every
dimension, the dimension sizes of the inputs are either the same or
one of them is 1. See Compatible Array Sizes for Basic Operations and
Array vs. Matrix Operations for more information.
Element-wise arithmetic operators — +, -, .*, .^, ./, .\
Relational operators — <, <=, >, >=, ==, ~=
Logical operators — &, |, xor
Bit-wise functions — bitand, bitor, bitxor
Elementary math functions — max, min, mod, rem, hypot, atan2, atan2d
For example, you can calculate the mean of each column in a matrix A,
and then subtract the vector of mean values from each column with A -
mean(A).
Previously, this functionality was available via the bsxfun function.
It is now recommended that you replace most uses of bsxfun with direct
calls to the functions and operators that support implicit expansion.
Compared to using bsxfun, implicit expansion offers faster speed,
better memory usage, and improved readability of code.
None of the above answers worked "out of the box" for me, however, the following function, obtained by copying the ideas of the other answers works:
apply_func_2_cols = #(f,M) cell2mat(cellfun(f,num2cell(M,1), 'UniformOutput',0));
It takes a function f and applies it to every column of the matrix M.
So for example:
f = #(v) [0 1;1 0]*v + [0 0.1]';
apply_func_2_cols(f,[0 0 1 1;0 1 0 1])
ans =
0.00000 1.00000 0.00000 1.00000
0.10000 0.10000 1.10000 1.10000
With recent versions of Matlab, you can use the Table data structure to your advantage. There's even a 'rowfun' operation but I found it easier just to do this:
a = magic(6);
incrementRow = cell2mat(cellfun(#(x) x+1,table2cell(table(a)),'UniformOutput',0))
or here's an older one I had that doesn't require tables, for older Matlab versions.
dataBinner = cell2mat(arrayfun(#(x) Binner(a(x,:),2)',1:size(a,1),'UniformOutput',0)')
The accepted answer seems to be to convert to cells first and then use cellfun to operate over all of the cells. I do not know the specific application, but in general I would think using bsxfun to operate over the matrix would be more efficient. Basically bsxfun applies an operation element-by-element across two arrays. So if you wanted to multiply each item in an n x 1 vector by each item in an m x 1 vector to get an n x m array, you could use:
vec1 = [ stuff ]; % n x 1 vector
vec2 = [ stuff ]; % m x 1 vector
result = bsxfun('times', vec1.', vec2);
This will give you matrix called result wherein the (i, j) entry will be the ith element of vec1 multiplied by the jth element of vec2.
You can use bsxfun for all sorts of built-in functions, and you can declare your own. The documentation has a list of many built-in functions, but basically you can name any function that accepts two arrays (vector or matrix) as arguments and get it to work.
I like splitapply, which allows a function to be applied to the columns of A using splitapply(fun,A,1:size(A,2)).
For example
A = magic(5);
B = splitapply(#(x) x+1, A, 1:size(A,2));
C = splitapply(#std, A, 1:size(A,2));
To apply the function to the rows, you could use
splitapply(fun, A', 1:size(A,1))';
(My source for this solution is here.)
Stumbled upon this question/answer while seeking how to compute the row sums of a matrix.
I would just like to add that Matlab's SUM function actually has support for summing for a given dimension, i.e a standard matrix with two dimensions.
So to calculate the column sums do:
colsum = sum(M) % or sum(M, 1)
and for the row sums, simply do
rowsum = sum(M, 2)
My bet is that this is faster than both programming a for loop and converting to cells :)
All this can be found in the matlab help for SUM.
if you know the length of your rows you can make something like this:
a=rand(9,3);
b=rand(9,3);
arrayfun(#(x1,x2,y1,y2,z1,z2) line([x1,x2],[y1,y2],[z1,z2]) , a(:,1),b(:,1),a(:,2),b(:,2),a(:,3),b(:,3) )
I am doing a matlab homework and I solved the next problem. and the grader say it is a correct answer. I used for in the program and we didn't take yet in the course. can someone suggest a program with out for or if.
Write a function called pitty that takes a matrix called ab as an input argument. The matrix ab has exactly two columns. The function should return a column vector c that contains positive values each of which satisfies the Pythagorean Theorem, a2 + b2 = c2, for the corresponding row of ab assuming that the two elements on each row of ab correspond to one pair, a and b, respectively, in the theorem. Note that the built-in MATLAB function sqrt computes the square root and you are allowed to use it.
my code
function c = pitty(ab)
[n , m] = size(ab)
for i = 1:n
c(i) = sqrt(ab(i,1)^2 + ab(i,2)^2)
end
c = c'
end
You can square each element of the matrix by using the .^2 operator. Then summing along each row sum(...,2) and finally taking the root.
ab = [1,2;3,4;5,6]
c = sqrt(sum(ab.^2,2));
No for needed for that.
MATLAB has a function for this called hypot short for hypotenuse. The main reason for existence of it is that it takes care of overflow (and underflow) problem. If the input values are too large (or small) the square of them (or sum of square of them) can be larger (smaller) than the largest (smallest) representable value in floating-point, while still the corresponding c value is representable. In your case you can use it like this:
c=hypot(ab(:,1), ab(:,2));
Cleve Moler, one of the founders of MathWorks and original author of MATLAB, tells the story behind hypotin this article.
I'd recommend hypot as in Mohsen's answer.
Just for some variety, here's another approach, using complex numbers. This approach avoids overflow and underflow, just like hypot does:
abs(ab*[1; 1j])
Examples (taken from Cleve Moler's post):
>> ab = [1e154 1e154]; %// LARGE VALUES: possible overflow
>> sqrt(sum(ab.^2,2))
ans =
Inf %// overflow
>> hypot(ab(:,1), ab(:,2))
ans =
1.414213562373095e+154 %// correct result
>> abs(ab*[1; 1j])
ans =
1.414213562373095e+154 %// correct result
>> ab = [3e-200 4e-200]; %// SMALL VALUES: possible underflow
>> sqrt(sum(ab.^2,2))
ans =
0 %// underflow
>> hypot(ab(:,1), ab(:,2))
ans =
5.000000000000000e-200 %// correct result
>> abs(ab*[1; 1j])
ans =
5.000000000000000e-200 %// correct result
You can apply a function to every item in a vector by saying, for example, v + 1, or you can use the function arrayfun. How can I do it for every row/column of a matrix without using a for loop?
Many built-in operations like sum and prod are already able to operate across rows or columns, so you may be able to refactor the function you are applying to take advantage of this.
If that's not a viable option, one way to do it is to collect the rows or columns into cells using mat2cell or num2cell, then use cellfun to operate on the resulting cell array.
As an example, let's say you want to sum the columns of a matrix M. You can do this simply using sum:
M = magic(10); %# A 10-by-10 matrix
columnSums = sum(M, 1); %# A 1-by-10 vector of sums for each column
And here is how you would do this using the more complicated num2cell/cellfun option:
M = magic(10); %# A 10-by-10 matrix
C = num2cell(M, 1); %# Collect the columns into cells
columnSums = cellfun(#sum, C); %# A 1-by-10 vector of sums for each cell
You may want the more obscure Matlab function bsxfun. From the Matlab documentation, bsxfun "applies the element-by-element binary operation specified by the function handle fun to arrays A and B, with singleton expansion enabled."
#gnovice stated above that sum and other basic functions already operate on the first non-singleton dimension (i.e., rows if there's more than one row, columns if there's only one row, or higher dimensions if the lower dimensions all have size==1). However, bsxfun works for any function, including (and especially) user-defined functions.
For example, let's say you have a matrix A and a row vector B. E.g., let's say:
A = [1 2 3;
4 5 6;
7 8 9]
B = [0 1 2]
You want a function power_by_col which returns in a vector C all the elements in A to the power of the corresponding column of B.
From the above example, C is a 3x3 matrix:
C = [1^0 2^1 3^2;
4^0 5^1 6^2;
7^0 8^1 9^2]
i.e.,
C = [1 2 9;
1 5 36;
1 8 81]
You could do this the brute force way using repmat:
C = A.^repmat(B, size(A, 1), 1)
Or you could do this the classy way using bsxfun, which internally takes care of the repmat step:
C = bsxfun(#(x,y) x.^y, A, B)
So bsxfun saves you some steps (you don't need to explicitly calculate the dimensions of A). However, in some informal tests of mine, it turns out that repmat is roughly twice as fast if the function to be applied (like my power function, above) is simple. So you'll need to choose whether you want simplicity or speed.
I can't comment on how efficient this is, but here's a solution:
applyToGivenRow = #(func, matrix) #(row) func(matrix(row, :))
applyToRows = #(func, matrix) arrayfun(applyToGivenRow(func, matrix), 1:size(matrix,1))'
% Example
myMx = [1 2 3; 4 5 6; 7 8 9];
myFunc = #sum;
applyToRows(myFunc, myMx)
Building on Alex's answer, here is a more generic function:
applyToGivenRow = #(func, matrix) #(row) func(matrix(row, :));
newApplyToRows = #(func, matrix) arrayfun(applyToGivenRow(func, matrix), 1:size(matrix,1), 'UniformOutput', false)';
takeAll = #(x) reshape([x{:}], size(x{1},2), size(x,1))';
genericApplyToRows = #(func, matrix) takeAll(newApplyToRows(func, matrix));
Here is a comparison between the two functions:
>> % Example
myMx = [1 2 3; 4 5 6; 7 8 9];
myFunc = #(x) [mean(x), std(x), sum(x), length(x)];
>> genericApplyToRows(myFunc, myMx)
ans =
2 1 6 3
5 1 15 3
8 1 24 3
>> applyToRows(myFunc, myMx)
??? Error using ==> arrayfun
Non-scalar in Uniform output, at index 1, output 1.
Set 'UniformOutput' to false.
Error in ==> #(func,matrix)arrayfun(applyToGivenRow(func,matrix),1:size(matrix,1))'
For completeness/interest I'd like to add that matlab does have a function that allows you to operate on data per-row rather than per-element. It is called rowfun (http://www.mathworks.se/help/matlab/ref/rowfun.html), but the only "problem" is that it operates on tables (http://www.mathworks.se/help/matlab/ref/table.html) rather than matrices.
Adding to the evolving nature of the answer to this question, starting with r2016b, MATLAB will implicitly expand singleton dimensions, removing the need for bsxfun in many cases.
From the r2016b release notes:
Implicit Expansion: Apply element-wise operations and functions to arrays with automatic expansion of dimensions of length 1
Implicit expansion is a generalization of scalar expansion. With
scalar expansion, a scalar expands to be the same size as another
array to facilitate element-wise operations. With implicit expansion,
the element-wise operators and functions listed here can implicitly
expand their inputs to be the same size, as long as the arrays have
compatible sizes. Two arrays have compatible sizes if, for every
dimension, the dimension sizes of the inputs are either the same or
one of them is 1. See Compatible Array Sizes for Basic Operations and
Array vs. Matrix Operations for more information.
Element-wise arithmetic operators — +, -, .*, .^, ./, .\
Relational operators — <, <=, >, >=, ==, ~=
Logical operators — &, |, xor
Bit-wise functions — bitand, bitor, bitxor
Elementary math functions — max, min, mod, rem, hypot, atan2, atan2d
For example, you can calculate the mean of each column in a matrix A,
and then subtract the vector of mean values from each column with A -
mean(A).
Previously, this functionality was available via the bsxfun function.
It is now recommended that you replace most uses of bsxfun with direct
calls to the functions and operators that support implicit expansion.
Compared to using bsxfun, implicit expansion offers faster speed,
better memory usage, and improved readability of code.
None of the above answers worked "out of the box" for me, however, the following function, obtained by copying the ideas of the other answers works:
apply_func_2_cols = #(f,M) cell2mat(cellfun(f,num2cell(M,1), 'UniformOutput',0));
It takes a function f and applies it to every column of the matrix M.
So for example:
f = #(v) [0 1;1 0]*v + [0 0.1]';
apply_func_2_cols(f,[0 0 1 1;0 1 0 1])
ans =
0.00000 1.00000 0.00000 1.00000
0.10000 0.10000 1.10000 1.10000
With recent versions of Matlab, you can use the Table data structure to your advantage. There's even a 'rowfun' operation but I found it easier just to do this:
a = magic(6);
incrementRow = cell2mat(cellfun(#(x) x+1,table2cell(table(a)),'UniformOutput',0))
or here's an older one I had that doesn't require tables, for older Matlab versions.
dataBinner = cell2mat(arrayfun(#(x) Binner(a(x,:),2)',1:size(a,1),'UniformOutput',0)')
The accepted answer seems to be to convert to cells first and then use cellfun to operate over all of the cells. I do not know the specific application, but in general I would think using bsxfun to operate over the matrix would be more efficient. Basically bsxfun applies an operation element-by-element across two arrays. So if you wanted to multiply each item in an n x 1 vector by each item in an m x 1 vector to get an n x m array, you could use:
vec1 = [ stuff ]; % n x 1 vector
vec2 = [ stuff ]; % m x 1 vector
result = bsxfun('times', vec1.', vec2);
This will give you matrix called result wherein the (i, j) entry will be the ith element of vec1 multiplied by the jth element of vec2.
You can use bsxfun for all sorts of built-in functions, and you can declare your own. The documentation has a list of many built-in functions, but basically you can name any function that accepts two arrays (vector or matrix) as arguments and get it to work.
I like splitapply, which allows a function to be applied to the columns of A using splitapply(fun,A,1:size(A,2)).
For example
A = magic(5);
B = splitapply(#(x) x+1, A, 1:size(A,2));
C = splitapply(#std, A, 1:size(A,2));
To apply the function to the rows, you could use
splitapply(fun, A', 1:size(A,1))';
(My source for this solution is here.)
Stumbled upon this question/answer while seeking how to compute the row sums of a matrix.
I would just like to add that Matlab's SUM function actually has support for summing for a given dimension, i.e a standard matrix with two dimensions.
So to calculate the column sums do:
colsum = sum(M) % or sum(M, 1)
and for the row sums, simply do
rowsum = sum(M, 2)
My bet is that this is faster than both programming a for loop and converting to cells :)
All this can be found in the matlab help for SUM.
if you know the length of your rows you can make something like this:
a=rand(9,3);
b=rand(9,3);
arrayfun(#(x1,x2,y1,y2,z1,z2) line([x1,x2],[y1,y2],[z1,z2]) , a(:,1),b(:,1),a(:,2),b(:,2),a(:,3),b(:,3) )
I'm a little surprised that MATLAB doesn't have a Map function, so I hacked one together myself since it's something I can't live without. Is there a better version out there? Is there a somewhat-standard functional programming library for MATLAB out there that I'm missing?
function results = map(f,list)
% why doesn't MATLAB have a Map function?
results = zeros(1,length(list));
for k = 1:length(list)
results(1,k) = f(list(k));
end
end
usage would be e.g.
map( #(x)x^2,1:10)
The short answer: the built-in function arrayfun does exactly what your map function does for numeric arrays:
>> y = arrayfun(#(x) x^2, 1:10)
y =
1 4 9 16 25 36 49 64 81 100
There are two other built-in functions that behave similarly: cellfun (which operates on elements of cell arrays) and structfun (which operates on each field of a structure).
However, these functions are often not necessary if you take advantage of vectorization, specifically using element-wise arithmetic operators. For the example you gave, a vectorized solution would be:
>> x = 1:10;
>> y = x.^2
y =
1 4 9 16 25 36 49 64 81 100
Some operations will automatically operate across elements (like adding a scalar value to a vector) while others operators have a special syntax for element-wise operation (denoted by a . before the operator). Many built-in functions in MATLAB are designed to operate on vector and matrix arguments using element-wise operations (often applied to a given dimension, such as sum and mean for example), and thus don't require map functions.
To summarize, here are some different ways to square each element in an array:
x = 1:10; % Sample array
f = #(x) x.^2; % Anonymous function that squares each element of its input
% Option #1:
y = x.^2; % Use the element-wise power operator
% Option #2:
y = f(x); % Pass a vector to f
% Option #3:
y = arrayfun(f, x); % Pass each element to f separately
Of course, for such a simple operation, option #1 is the most sensible (and efficient) choice.
In addition to vector and element-wise operations, there's also cellfun for mapping functions over cell arrays. For example:
cellfun(#upper, {'a', 'b', 'c'}, 'UniformOutput',false)
ans =
'A' 'B' 'C'
If 'UniformOutput' is true (or not provided), it will attempt to concatenate the results according to the dimensions of the cell array, so
cellfun(#upper, {'a', 'b', 'c'})
ans =
ABC
A rather simple solution, using Matlab's vectorization would be:
a = [ 10 20 30 40 50 ]; % the array with the original values
b = [ 10 8 6 4 2 ]; % the mapping array
c = zeros( 1, 10 ); % your target array
Now, typing
c( b ) = a
returns
c = 0 50 0 40 0 30 0 20 0 10
c( b ) is a reference to a vector of size 5 with the elements of c at the indices given by b. Now if you assing values to this reference vector, the original values in c are overwritten, since c( b ) contains references to the values in c and no copies.
It seems that the built-in arrayfun doesn't work if the result needed is an array of function:
eg:
map(#(x)[x x^2 x^3],1:10)
slight mods below make this work better:
function results = map(f,list)
% why doesn't MATLAB have a Map function?
for k = 1:length(list)
if (k==1)
r1=f(list(k));
results = zeros(length(r1),length(list));
results(:,k)=r1;
else
results(:,k) = f(list(k));
end;
end;
end
If matlab does not have a built in map function, it could be because of efficiency considerations. In your implementation you are using a loop to iterate over the elements of the list, which is generally frowned upon in the matlab world. Most built-in matlab functions are "vectorized", i. e. it is more efficient to call a function on an entire array, than to iterate over it yourself and call the function for each element.
In other words, this
a = 1:10;
a.^2
is much faster than this
a = 1:10;
map(#(x)x^2, a)
assuming your definition of map.
You don't need map since a scalar-function that is applied to a list of values is applied to each of the values and hence works similar to map. Just try
l = 1:10
f = #(x) x + 1
f(l)
In your particular case, you could even write
l.^2
Vectorizing the solution as described in the previous answers is the probably the best solution for speed. Vectorizing is also very Matlaby and feels good.
With that said Matlab does now have a Map container class.
See http://www.mathworks.com/help/matlab/map-containers.html