GWT MVP when & how to use Dependency Injection - gwt

We're using the MVP pattern and GWT and I'm wondering how and when dependency injection should be used.
We have an App Controller, Presenters, Views and Model code. From reading the GIN tutorial at http://code.google.com/p/google-gin/wiki/GinTutorial#whb it would seem that you should use it at the highest level possible (so in the App Controller).
Should I use it to create my presenters, so I can do injector.getPresenter();

There is no required place in your app to use dependency injection. You could use it for one view or module, or use it everywhere. Either way, there's no reason not to make the injector available at the highest possible level (i.e., your App Controller).
As for when to use dependency injection, I'd say wherever you want to test a component of your system without having to load real heavy-weight dependencies.
Consider trying to test that this method returns 3:
public int returnsThree() {
new WeatherChecker().checkTheWeather();
return 3;
}
You wouldn't be able to without loading and running that big weather-checking dependency, meaning network access, timeout/failure handling, etc.
This is much better:
public int returnsThree(WeatherChecker dep) {
dep.checkTheWeather();
return 3;
}
That way, your test can just pass in a mock for this dependency, like:
public class MockWeatherChecker extends WeatherChecker {
#Override
public void checkTheWeather() {
// do nothing
}
}
If a component doesn't have any dependencies, which is unlikely, then you don't need to use dependency injection for it.
Presenters typically have a dependency on the view, which can easily be mocked out for faster tests (test using JUnit, not GWT tests). They may also depend on an EventBus, or something similar, which can easily be mocked out to focus on testing the presenter's logic.
Dependency injection is about facilitating testing as much as it is about separating responsibility.

Related

MVVM Dependency Injection

I'm in the process of teaching myself the MVVM pattern by dividing the pattern into its core facets and learning those facets one by one.
My question is related to dependency injection. What is it, and why/when should I use it? I've looked at Jason Dolinger's excellent MVVM intro video and I see he uses Unity. This might be strange to ask but how would I implement dependency injection WITHOUT using Unity? I basically want to understand the concept of dependency injection and how to use it without having to implement other frameworks/tools (for now).
Thanks.
I think it's good that you want to understand DI without using a framework, the concept is not terribly difficult to wrap your head around.
Let's say you want to use some form of transportation.
interface ITransportation
{
Transport();
}
An initial implementation of a method that uses a form of transportation might look like this:
public void Move()
{
ITransportation car = new Car();
car.Transport();
}
The problem with that method is that it is now dependent on a Car class. We should pass our transportation object in for added flexibility. This is inversion of control and is closely related to DI.
public void Move(ITransportation tr)
{
tr.Transport();
}
As you can see, we don't need to know anything about a specific DI framework. You might also want to check out the ninject DI by hand tutorial.
Just to extend #Andy's answer
Dependency Injection is one of the forms of the Dependency Inversion Principle
To achieve the decoupling of dependencies (as typically found in layered architecture),
DI is commonly used for instantiation scenarios such as basic new() and patterns like Factory method. In addition to being able to inject a new dependency instance every time (e.g. like factory), containers can also be set up to inject named instances, singleton instances, etc - i.e. IoC containers usually also take on the responsibility of managing the lifespans of objects as well.
One potential 'mindset shift' is that dependencies now potentially become publicly visible on concrete classes, since DI typically injects via constructors or public Get / Set properties. This may seem strange if you are used to using OO encapsulation, where dependencies of a class are seen as implementation and should be hidden from the 'outside' i.e. class method signatures.
However, by implementing Interface / Concrete class separation (as you should, not only for decoupling but also for testing / mocking purposes), the injection constructors / property injection methods will not be on the interface, so encapsulation is again in place.
Re : "Doing DI by hand" without Unity etc
What you would need to do is to code your own IoC container, which then is responsible for 'building up' instances of classes - during each 'build up', you would scan the class for dependencies (which are configured in the container, e.g. by config, by attributes, or simply just by convention, e.g. all public settable properties, or any class parameters on a constructor will be assumed to be dependencies). You would then create (if necessary) and inject this 'dependency' instance onto the object (e.g. by using reflection). And then recursively, all dependencies of these dependencies need to be built up etc. You would then also need to provide lifespan management for each of the objects, e.g. Singletons etc.

Avoiding the service locator with inversion of control while dynamically creating objects

I have a WPF application based on MVVM with Caliburn.Micro and Ninject. I have a root viewmodel called ShellViewModel. It has a couple of dependencies (injected via constructor) which are configured in Caliburn's Bootstrapper. So far so good.
Somewhere down the line, there is a MenuViewModel with a couple of buttons, that in turn open other viewmodels with their own dependencies. These viewmodels are not created during creation of the root object, but I still want to inject dependencies into them from my IoC container.
I've read this question on service locator vs dependency injection and I understand the points being made.
I'm under the impression however that my MenuViewModel needs to be able to access my IoC container in order the properly inject the viewmodels that are being made dynamically..which is something I'm trying to avoid. Is there another way?
Yes, I believe you can do something a bit better.
Consider that if there was no on-demand requirement then obviously you could make those viewmodels be dependencies of MenuViewModel and so on up the chain until you get to the root of the object graph (the ShellViewModel) and the container would wire everything up.
You can put a "firewall" in the object graph by substituting something that can construct the dependencies of MenuViewModel for the dependencies themselves. The container is the obvious choice for this job, and IMHO from a practical standpoint this is a good enough solution even if it's not as pure.
But you can also substitute a special-purpose factory instead of the container; this factory would take a dependency on the container and provide read-only properties for the real dependencies of MenuViewModel. Accessing the properties would result in having the container resolve the objects and returning them (accessor methods would also work instead of properties; what's more appropriate is another discussion entirely, so just use whatever you think is better).
It may look like that you haven't really changed the status quo, but the situation is not the same it would be if MenuViewModel took a direct dependency on the container. In that case you would have no idea what the real dependencies of MenuViewModel are by looking at its public interface, while now you would see that there's a dependency on something like
interface IMenuViewModelDependencyFactory
{
public RealDependencyA { get; }
public RealDependencyB { get; }
}
which is much more informative. And if you look at the public interface of the concrete MenuViewModelDependencyFactory things are also much better:
class MenuViewModelDependencyFactory : IMenuViewModelDependencyFactory
{
private Container container;
public MenuViewModelDependencyFactory(Container container) { ... }
public RealDependencyA { get { ... } }
public RealDependencyB { get { ... } }
}
There should be no confusion over what MenuViewModelDependencyFactory intends to do with the container here because it's so very highly specialized.

IOC vs New guidelines

Recently I was looking at some source code provided by community leaders in their open source implementations. One these projects made use of IOC. Here is sample hypothetical code:
public class Class1
{
private ISomeInterface _someObject;
public Class1(ISomeInterface someObject)
{
_someObject = someObject;
}
// some more code and then
var someOtherObject = new SomeOtherObject();
}
My question is not about what the IOCs are for and how to use them in technical terms but rather what are the guidelines regarding object creation. All that effort and then this line using "new" operator. I don't quite understand. Which object should be created by IOC and for which ones it is permissible to be created via the new operator?
As a general rule of thumb, if something is providing a service which may want to be replaced either for testing or to use a different implementation (e.g. different authentication services) then inject the dependency. If it's something like a collection, or a simple data object which isn't providing behaviour which you'd ever want to vary, then it's fine to instantiate it within the class.
Usually you use IoC because:
A dependency that can change in the future
To code against interfaces, not concrete types
To enable mocking these dependencies in Unit Testing scenarios
You could avoid using IoC in the case where you don't control the dependency, for example an StringBuilder is always going to be an StringBuilder and have a defined behavior, and you usually don't really need to mock that; while you might want to mock an HttpRequestBase, because it's an external dependency on having an internet connection, for example, which is a problem during unit tests (longer execution times, and it's something out of your control).
The same happens for database access repositories and so on.

OSGi services - best practice

I start loving OSGi services more and more and want to realize a lot more of my components as services. Now I'm looking for best-practice, especially for UI components.
For Listener-relations I use the whiteboard-pattern, which IMHO opinion is the best approach. However if I want more than just notifications, I can think of three possible solutions.
Imagine the following scenario:
interface IDatabaseService {
EntityManager getEntityManager();
}
[1] Whiteboard Pattern - with self setting service
I would create a new service interface:
interface IDatabaseServiceConsumer {
setDatabaseService(IDatabaseService service);
}
and create a declarative IDatabaseService component with a bindConsumer method like this
protected void bindConsumer(IDatabaseServiceConsumer consumer) {
consumer.setDatabaseService(this);
}
protected void unbindConsumer(IDatabaseServiceConsumer consumer) {
consumer.setDatabaseService(null);
}
This approach assumes that there's only one IDatabaseService.
[Update] Usage would look like this:
class MyUIClass ... {
private IDatabaseService dbService;
Consumer c = new IDatabaseServiceConsumer() {
setDatabaseService(IDatabaseService service) {
dbService = service;
}
}
Activator.registerService(IDatabaseServiceConsumer.class,c,null);
...
}
[2] Make my class a service
Image a class like
public class DatabaseEntryViewer extends TableViewer
Now, I just add bind/unbind methods for my IDatabaseService and add a component.xml and add my DatabaseEntryViewer. This approach assumes, that there is a non-argument constructor and I create the UI components via a OSGi-Service-Factory.
[3] Classic way: ServiceTracker
The classic way to register a static ServiceTracker in my Activator and access it. The class which uses the tracker must handle the dynamic.
Currently I'm favoring the first one, as this approach doesn't complicated object creation and saves the Activator from endless, static ServiceTrackers.
I have to agree with #Neil Bartlett, your option 1 is backward. You are in effect using an Observer/Observable pattern.
Number 2 is not going to work, since the way UI objects lifecycles are managed in RCP won't allow you to do what you want. The widget will have to be created as part of the initialization of some sort of view container (ViewPart, Dialog, ...). This view part is typically configured and managed via the Workbench/plugin mechanism. You should work with this, not against it.
Number 3 would be a simple option, not necessarily the best, but simple.
If you use Spring DM, then you can easily accomplish number 2. It provides a means to inject your service beans into your UI Views, Pages, etc. You use a spring factory to create your views (as defined in your plugin.xml), which is configured via a Spring configuration, which is capable of injecting your services into the bean.
You may also be able to combine the technique used by the SpringExtensionFactory class along with DI to accomplish the same thing, without introducing another piece of technology. I haven't tried it myself so I cannot comment on the difficulty, although it is what I would try to do to bridge the gap between RCP and OSGi if I wasn't already using Spring DM.

Library assembly IoC setup

I am working in a project that has two main parts: a class library assembly and the main application. Both are using Castle Windsor for IoC and both manually setup their list of of components in code (to aid refactoring and prevent the need for a config file). Currently the main application has code like this:
public static void Main()
{
// Perform library IoC setup
LibraryComponent.Init();
// Perform application IoC setup
IoC.Register<IXyz, Abc>("abc");
// etc, etc, ...
// Start the application code ...
}
However the call to initialise the library doesn't seem like a good solution. What is the best way to setup a class library that uses an IoC container to decouple its internal components?
Edit:
Lusid proposed using a static method on each public component in the library that would in turn make the call to initialise. One possible way to make this a bit nicer would be to use something like PostSharp to do this in an aspect-oriented way. However I was hoping for something a bit more elegant ;-)
Lusid also proposed using the AppDomain.AssemblyLoad event to perform custom steps at load time, however I am really after a way to avoid the client assembly from requiring any setup code.
Thanks!
I'm not sure if I'm understanding exactly the problem you are trying to solve, but my first guess is that you are looking for a way to decouple the need to call the Init method from your main application.
One method I've used in the past is a static constructor on a static class in the class library:
static public class LibraryComponent {
static LibraryComponent() {
Init();
}
}
If you have multiple class libraries, and would like a quick and dirty way of evaluating all of them as they are loaded, here's a (kinda hairy) way:
[STAThread]
static void Main()
{
AppDomain.CurrentDomain.AssemblyLoad += new AssemblyLoadEventHandler(CurrentDomain_AssemblyLoad);
}
static void CurrentDomain_AssemblyLoad(object sender, AssemblyLoadEventArgs args)
{
IEnumerable<Type> types = args.LoadedAssembly.GetTypes()
.Where(t => typeof(IMyModuleInterface).IsAssignableFrom(t));
foreach (Type t in types)
{
doSomethingWithType(t);
}
}
The Where clause could be anything you want, of course. The code above would find any class deriving from IMyModuleInterface in each assembly that gets loaded into the current AppDomain, and then I can do something with it, whether it be registering dependencies, maintaining an internal list, whatever.
Might not be exactly what you are looking for, but hopefully it helps in some way.
You could have a registration module. Basically LibraryComponent.Init() function takes an IRegistrar to wire everything up.
The IRegistrar could basically have a function Register(Type interface, Type implementation). The implimentor would map that function back to their IOC container.
The downside is that you can't rely on anything specific to the container your using.
Castle Windsor actually has a concept called facilities that are basically just ways of wrapping standardised pieces of configuration. In this model, you would simply add the two facilities to the container and they would do the work.
Of course, this wouldn't really be better than calling a library routine to do the work unless you configured the facilities in a configuration file (consider binsor). If you are really allergic to configuration files, your current solution is probably the best.