Related
While reading through Paul Graham's Essays, I've become more and more curious about Lisp.
In this article, he mentions that one of the most powerful features is that you can write programs that write other programs.
I couldn't find an intuitive explanation on his site or elsewhere. Is there some minimal Lisp program that shows an example of how this is done? Or, can you explain in words what this means exactly?
Lisp is homoiconic. Here is a function which build an s-expression representing a sum.
(defun makes(x) (list '+ x 2))
so (makes 5) evaluates to (+ 5 2) which is a valid s-expression. You could pass that to eval
There are more complex examples with Lisp macros. See also this. Read the section on Evaluation and Compilation of Common Lisp HyperSpec (also notice its compile, defmacro, eval forms). Be aware of multi-staged programming.
I strongly recommend reading SICP (it is freely downloadable) then Lisp In Small Pieces. You could also enjoy reading Gödel, Escher, Bach.... and J.Pitrat's blog on Bootstrapping Artificial Intelligence.
BTW, with C on POSIX, you might also code programs generating C code (or use GCCJIT or LLVM), compiling that generated code as a plugin, and dlopen-ing it.
While homoiconicity is the fundamental property that makes this easy, a good example of this in practice is the macro facility present in many lisps. Homoiconicity allows you to write lisp functions that take lisp source (represented as lists of lists) and do list manipulation operations on it to produce other lisp source. A macro is a plain lisp function for doing this which is installed into the compiler/evaluator of your lisp as an extension of the language's syntax. The macro gets called like a normal function, but instead of waiting until runtime the compiler passes the raw code of the macro's arguments to it. The macro is then responsible for returning some alternative code for the compiler to process in its place.
A simple example is the built-in when macro, used like so (assuming some variable x):
(when (evenp x)
(print "It's even!")
(* 5 x))
when is similar to the more fundamental if, but where if takes 3 sub-expressions (test, then-case, else-case) when takes the test and then an arbitrary number of expressions to run in the "then" case (it returns nil in the else case). To write this using if you need an explicit block (a progn in Common Lisp):
(if (evenp x)
(progn
(print "It's even!")
(* 5 x))
nil)
Translating the when version to the if version is some very simple list-manipluation:
(defun when->if (when-expression)
(list 'if
(second when-expression)
(append (list 'progn)
(rest (rest when-expression)))))
Although I'd probably use the list templating syntax and some shorter functions to get this:
(defun when->if (when-expression)
`(if ,(second when-expression) (progn ,#(cddr when-expression)) nil))
This gets called like so: (when->if (list 'when (list 'evenp 'x) ...)).
Now all we need to do is inform the compiler that when it sees an expression like (when ...) (actually I'm writing one for (my-when ...) to avoid clashing with the built-in version) it should use something like our when->if to turn it into code it understands. The actual macro syntax for this actually lets you take apart the expression/list ("destructure" it) as part of the arguments of the macro, so it ends up looking like this:
(defmacro my-when (test &body then-case-expressions)
`(if ,test (progn ,#then-case-expressions) nil))
Looks sorta like a regular function, except it's taking code and outputting other code. Now we can write (my-when (evenp x) ...) and everything works.
The lisp macro facility forms a major component of the expressive power of lisps- they allow you to mold the language to better suit your project and abstract away nearly any boilerplate. Macros can be as simple as when or complex enough to make a third-party OOP library feel like a first-class part of the language (in fact many lisps still implement OOP as a pure lisp library as opposed to a special component of the core compiler, not that you can tell from using them).
A good example are Lisp macros. They aren't evaluated, but instead they transform to the expressions within them. That is what makes them essentially programs that write program. They transform the expressions within them between compile-time and runtime. This means that you can essentially create your own syntax since a macro isn't actually evaluated. A good example would be this invalid common lisp form:
(backwards ("Hello world" nil format))
Clearly the syntax for the format function is backwards. BUT... we are passing it to a macro which isn't evaluated, so we will not get a backtrace error, because the macro isn't actually evaluated. Here is what our macro looks like:
(defmacro backwards (expr)
(reverse expr))
As you can see, we reverse the expression within the macro, which is why it becomes a standard Lisp form between compile-time and runtime. We have essentially altered the syntax of Lisp with a simple example. The call to the macro isn't evaluated, but is translated. A more complex example would be creating a web page in html:
(defmacro standard-page ((&key title href)&body body)
`(with-html-output-to-string (*standard-output* nil :prologue t :indent t)
(:html :lang "en"
(:head
(:meta :charset "utf-8")
(:title ,title)
(:link :rel "stylesheet"
:type "text/css"
:href ,href))
,#body)))
We can essentially create a macro, and the call to that macro will not be evaluated, but it will expand to valid lisp syntax, and that will be evaluated. If we look at the macro expansion we can see that the expansion is what is evaluated:
(pprint (macroexpand-1 '(standard-page (:title "Hello"
:href "my-styles.css")
(:h1 "Hello world"))))
Which expands to:
(WITH-HTML-OUTPUT-TO-STRING (*STANDARD-OUTPUT* NIL :PROLOGUE T :INDENT T)
(:HTML :LANG "en"
(:HEAD (:META :CHARSET "utf-8") (:TITLE "Hello")
(:LINK :REL "stylesheet" :TYPE "text/css" :HREF "my-styles.css"))
(:H1 "Hello world")))
This is why Paul Graham mentions that you can essentially write programs that write programs, and ViaWeb was essentially one big macro. A bunch of macros like this writing code that could write code that could write code...
I'm trying to move from Common Lisp to Chicken Scheme, and having plenty of problems.
My current problem is this: How can I write a macro (presumably using define-syntax?) that calls other macros?
For example, in Common Lisp I could do something like this:
(defmacro append-to (var value)
`(setf ,var (append ,var ,value)))
(defmacro something-else ()
(let ((values (list))
(append-to values '(1)))))
Whereas in Scheme, the equivalent code doesn't work:
(define-syntax append-to
(syntax-rules ()
((_ var value)
(set! var (append var value)))))
(define-syntax something-else
(syntax-rules ()
((_)
(let ((values (list)))
(append-to values '(1))))))
The append-to macro cannot be called from the something-else macro. I get an error saying the append-to "variable" is undefined.
According to all the information I've managed to glean from Google and other sources, macros are evaluated in a closed environment without access to other code. Essentially, nothing else exists - except built-in Scheme functions and macros - when the macro is evaluated. I have tried using er-macro-transformer, syntax-case (which is now deprecated in Chicken anyway) and even the procedural-macros module.
Surely the entire purpose of macros is that they are built upon other macros, to avoid repeating code. If macros must be written in isolation, they're pretty much useless, to my mind.
I have investigated other Scheme implementations, and had no more luck. Seems it simply cannot be done.
Can someone help me with this, please?
It looks like you're confusing expansion-time with run-time. The syntax-rules example you give will expand to the let+set, which means the append will happen at runtime.
syntax-rules simply rewrites input to given output, expanding macros until there's nothing more to expand. If you want to actually perform some computation at expansion time, the only way to do that is with a procedural macro (this is also what happens in your defmacro CL example).
In Scheme, evaluation levels are strictly separated (this makes separate compilation possible), so a procedure can use macros, but the macros themselves can't use the procedures (or macros) defined in the same piece of code. You can load procedures and macros from a module for use in procedural macros by using use-for-syntax. There's limited support for defining things to run at syntax expansion time by wrapping them in begin-for-syntax.
See for example this SO question or this discussion on the ikarus-users mailing list. Matthew Flatt's paper composable and compilable macros explains the theory behind this in more detail.
The "phase separation" thinking is relatively new in the Scheme world (note that the Flatt paper is from 2002), so you'll find quite a few people in the Scheme community who are still a bit confused about it. The reason it's "new" (even though Scheme has had macros for a long long time) is that procedural macros have only become part of the standard since R6RS (and reverted in R7RS because syntax-case is rather controversial), so the need to rigidly specify them hasn't been an issue until now. For more "traditional" Lispy implementations of Scheme, where compile-time and run-time are all mashed together, this was never an issue; you can just run code whenever.
To get back to your example, it works fine if you separate the phases correctly:
(begin-for-syntax
(define-syntax append-to
(ir-macro-transformer
(lambda (e i c)
(let ((var (cadr e))
(val (caddr e)))
`(set! ,var (append ,var ,val)))))) )
(define-syntax something-else
(ir-macro-transformer
(lambda (e i c)
(let ((vals (list 'print)))
(append-to vals '(1))
vals))))
(something-else) ; Expands to (print 1)
If you put the definition of append-to in a module of its own, and you use-for-syntax it, that should work as well. This will also allow you to use the same module both in the macros you define in a body of code as well as in the procedures, by simply requiring it both in a use and a use-for-syntax expression.
Correct me if I'm wrong, but there is nothing like gensym in Java, C, C++, Python, Javascript, or any of the other languages I've used, and I've never seemed to need it. Why is it necessary in Lisp and not in other langauges? For clarification, I'm learning Common Lisp.
Common Lisp has a powerful macro system. You can make new syntax patterns that behave exactly the way you want them to behave. It's even expressed in its own language, making everything in the language available to transform the code from what you want to write to something that CL actually understands. All languages with powerful macro systems provide gensym or do it implicitly in their macro implementation.
In Common Lisp you use gensym when you want to make code where the symbol shouldn't match elements used any other places in the result. Without it there is no guarantee that a user uses a symbol that the macro implementer also use and they start to interfere and the result is something different than the intended behavior. It makes sure nested expansions of the same macro don't interfere with previous expansions. With the Common Lisp macro system it's possible to make more restrictive macro systems similar to Scheme syntax-rules and syntax-case.
In Scheme there are several macro systems. One with pattern matching where new introduced symbols act automatically as if they are made with gensym. syntax-case will also by default make new symbols as if they were made with gensym and there is also a way to reduce hygiene. You can make CL defmacro with syntax-case but since Scheme doesn't have gensym you wouldn't be able to make hygienic macros with it.
Java, C, C++, Python, Javascript are all Algol dialects and none of them have other than simple template based macros. Thus they don't have gensym because they don't need it. Since the only way to introduce new syntax in these languages is to wish next version of it will provide it.
There are two Algol dialects with powerful macros that come to mind. Nemerle and Perl6. Both of them have hygienic approach, meaning variables introduced behave as if they are made with gensym.
In CL, Scheme, Nemerle, Perl6 you don't need to wait for language features. You can make them yourself! The news in both Java and PHP are easily implemented with macros in any of them should it not already be available.
Can't say which languages have an equivalent of GENSYM. Many languages don't have a first-class symbol data type (with interned and uninterned symbols) and many are not providing similar code generation (macros, ...) facilities.
An interned symbol is registered in a package. An uninterned is not. If the reader (the reader is the Lisp subsystem which takes textual s-expressions as input and returns data) sees two interned symbols in the same package and with the same name, it assumes that it is the same symbol:
CL-USER 35 > (eq 'cl:list 'cl:list)
T
If the reader sees an uninterned symbol, it creates a new one:
CL-USER 36 > (eq '#:list '#:list)
NIL
Uninterned symbols are written with #: in front of the name.
GENSYM is used in Lisp to create numbered uninterned symbols, because it is sometimes useful in code generation and then debugging this code. Note that the symbols are always new and not eq to anything else. But the symbol name could be the same as the name of another symbol. The number gives a clue to the human reader about the identity.
An example using MAKE-SYMBOL
make-symbol creates a new uninterned symbol using a string argument as its name.
Let's see this function generating some code:
CL-USER 31 > (defun make-tagbody (exp test)
(let ((start-symbol (make-symbol "start"))
(exit-symbol (make-symbol "exit")))
`(tagbody ,start-symbol
,exp
(if ,test
(go ,start-symbol)
(go ,exit-symbol))
,exit-symbol)))
MAKE-TAGBODY
CL-USER 32 > (pprint (make-tagbody '(incf i) '(< i 10)))
(TAGBODY
#:|start| (INCF I)
(IF (< I 10) (GO #:|start|) (GO #:|exit|))
#:|exit|)
Above generated code uses uninterned symbols. Both #:|start| are actually the same symbol. We would see this if we would have *print-circle* to T, since the printer then would clearly label identical objects. But here we don't get this added information. Now if you nest this code, then you would see more than the one start and one exit symbol, each which was used in two places.
An example using GENSYM
Now let's use gensym. Gensym also creates an uninterned symbol. Optionally this symbol is named by a string. A number (see the variable CL:*GENSYM-COUNTER*) is added.
CL-USER 33 > (defun make-tagbody (exp test)
(let ((start-symbol (gensym "start"))
(exit-symbol (gensym "exit")))
`(tagbody ,start-symbol
,exp
(if ,test
(go ,start-symbol)
(go ,exit-symbol))
,exit-symbol)))
MAKE-TAGBODY
CL-USER 34 > (pprint (make-tagbody '(incf i) '(< i 10)))
(TAGBODY
#:|start213051| (INCF I)
(IF (< I 10) (GO #:|start213051|) (GO #:|exit213052|))
#:|exit213052|)
Now the number is an indicator that the two uninterned #:|start213051| symbols are actually the same. When the code would be nested, the new version of the start symbol would have a different number:
CL-USER 7 > (pprint (make-tagbody `(progn
(incf i)
(setf j 0)
,(make-tagbody '(incf ij) '(< j 10)))
'(< i 10)))
(TAGBODY
#:|start2756| (PROGN
(INCF I)
(SETF J 0)
(TAGBODY
#:|start2754| (INCF IJ)
(IF (< J 10)
(GO #:|start2754|)
(GO #:|exit2755|))
#:|exit2755|))
(IF (< I 10) (GO #:|start2756|) (GO #:|exit2757|))
#:|exit2757|)
Thus it helps understanding generated code, without the need to turn *print-circle* on, which would label the identical objects:
CL-USER 8 > (let ((*print-circle* t))
(pprint (make-tagbody `(progn
(incf i)
(setf j 0)
,(make-tagbody '(incf ij) '(< j 10)))
'(< i 10))))
(TAGBODY
#3=#:|start1303| (PROGN
(INCF I)
(SETF J 0)
(TAGBODY
#1=#:|start1301| (INCF IJ)
(IF (< J 10) (GO #1#) (GO #2=#:|exit1302|))
#2#))
(IF (< I 10) (GO #3#) (GO #4=#:|exit1304|))
#4#)
Above is readable for the Lisp reader (the subsystem which reads s-expressions for textual representations), but a bit less for the human reader.
I believe that symbols (in the Lisp sense) are mostly useful in homoiconic languages (those in which the syntax of the language is representable as a data of that language).
Java, C, C++, Python, Javascript are not homoiconic.
Once you have symbols, you want some way to dynamically create them. gensym is a possibility, but you can also intern them.
BTW, MELT is a lisp-like dialect, it does not create symbols with gensym or by interning strings but with clone_symbol. (actually MELT symbols are instances of predefined CLASS_SYMBOL, ...).
gensym is available as a predicate in most of Prolog interpreters. You can find it in the eponym library.
I'd like to learn the internals of Lisp, so I want to see how everything is implemented.
For example,
(macroexpand '(loop for i upto 10 collect i))
gives me (in SBCL)
(BLOCK NIL
(LET ((I 0))
(DECLARE (TYPE (AND NUMBER REAL) I))
(SB-LOOP::WITH-LOOP-LIST-COLLECTION-HEAD (#:LOOP-LIST-HEAD-1026
#:LOOP-LIST-TAIL-1027)
(SB-LOOP::LOOP-BODY NIL
(NIL NIL (WHEN (> I '10) (GO SB-LOOP::END-LOOP)) NIL)
((SB-LOOP::LOOP-COLLECT-RPLACD
(#:LOOP-LIST-HEAD-1026 #:LOOP-LIST-TAIL-1027)
(LIST I)))
(NIL (SB-LOOP::LOOP-REALLY-DESETQ I (1+ I))
(WHEN (> I '10) (GO SB-LOOP::END-LOOP)) NIL)
((RETURN-FROM NIL
(SB-LOOP::LOOP-COLLECT-ANSWER
#:LOOP-LIST-HEAD-1026)))))))
But LOOP-BODY, WITH-LOOP-LIST-COLLECTION-HEAD, etc. are still macros. How can I expand a macro form completely?
To see the full expansion one needs to walk the Lisp form on all levels and expand them. For this it is necessary that this so-called code walker understands Lisp syntax (and not just s-expression syntax). For example in (lambda (a b) (setf a b)), the list (a b) is a parameter list and should not be macro expanded.
Various Common Lisp implementations provide such a tool. The answer of 6502 mentions MACROEXPAND-ALL which is provided by SBCL.
If you use a development environment, it is usually provided as a command:
SLIME: M-x slime-macroexpand-all with C-c M-m
LispWorks: menu Expression > Walk or M-x Walk Form, shorter M-Sh-m.
The other answers are excellent for you question but you say you want to see how everything is implemented.
Many macros (as you know already) are implemented using macros and whilst macroexpand-all is very useful but you can lose the context of what macro was responsible for what change.
One nice middle ground (if you are using slime) is to use slime-expand-1 (C-c Enter) which shows the expansion is another buffer. You can then useslime-expand-1 inside this new buffer to expand macros in-place.
This allows you to walk the tree expanding as you read and also to use undo to close the expansions again.
For me this has been a god-send in understanding other people's macros. Hope this helps you too, have fun!
You can try to use MACROEXPAND-ALL but what you may get is not necessarily useful.
In something like LOOP the real meat is the macro itself, not the generated code.
(Note: If you're not interested in portability, SBCL provides macroexpand-all, which will do what you're after. If you're after a portable solution, read on...)
The quick-and-dirty solution would be to macroexpand the form itself, then recursively macroexpand all but the first element of the resulting list. This is an imperfect solution; it will fail completely the moment it attempts to process a let's bindings (the first argument to let, the list of bindings, is not meant to be macroexpanded, but this code will do it anyway).
;;; Quick-and-dirty macroexpand-all
(defun macroexpand* (form)
(let ((form (macroexpand form)))
(cons (car form) (mapcar #'macroexpand (cdr form)))))
A more complete solution would consider special forms specially, not macroexpanding their unevaluated arguments. I could update with such a solution, if desired.
Also, even if I can use Common Lisp, should I? Is Scheme better?
You have several answers here, but none is really comprehensive (and I'm not talking about having enough details or being long enough). First of all, the bottom line: you should not use Common Lisp if you want to have a good experience with SICP.
If you don't know much Common Lisp, then just take it as that. (Obviously you can disregard this advice as anything else, some people only learn the hard way.)
If you already know Common Lisp, then you might pull it off, but at considerable effort, and at a considerable damage to your overall learning experience. There are some fundamental issues that separate Common Lisp and Scheme, which make trying to use the former with SICP a pretty bad idea. In fact, if you have the knowledge level to make it work, then you're likely above the level of SICP anyway. I'm not saying that it's not possible -- it is of course possible to implement the whole book in Common Lisp (for example, see Bendersky's pages) just as you can do so in C or Perl or whatever. It's just going to harder with languages that are further apart from Scheme. (For example, ML is likely to be easier to use than Common Lisp, even when its syntax is very different.)
Here are some of these major issues, in increasing order of importance. (I'm not saying that this list is exhaustive in any way, I'm sure that there are a whole bunch of additional issues that I'm omitting here.)
NIL and related issues, and different names.
Dynamic scope.
Tail call optimization.
Separate namespace for functions and values.
I'll expand now on each of these points:
The first point is the most technical. In Common Lisp, NIL is used both as the empty list and as the false value. In itself, this is not a big issue, and in fact the first edition of SICP had a similar assumption -- where the empty list and false were the same value. However, Common Lisp's NIL is still different: it is also a symbol. So, in Scheme you have a clear separation: something is either a list, or one of the primitive types of values -- but in Common Lisp, NIL is not only false and the empty list: it is also a symbol. In addition to this, you get a host of slightly different behavior -- for example, in Common Lisp the head and the tail (the car and cdr) of the empty list is itself the empty list, while in Scheme you'll get a runtime error if you try that. To top it off, you have different names and naming convention, for example -- predicates in Common Lisp end by convention with P (eg, listp) while predicates in Scheme end in a question mark (eg, list?); mutators in Common Lisp have no specific convention (some have an N prefix), while in Scheme they almost always have a suffix of !. Also, plain assignment in Common Lisp is usually setf and it can operate on combinations too (eg, (setf (car foo) 1)), while in Scheme it is set! and limited to setting bound variables only. (Note that Common Lisp has the limited version too, it's called setq. Almost nobody uses it though.)
The second point is a much deeper one, and possibly one that will lead to completely incomprehensible behavior of your code. The thing is that in Common Lisp, function arguments are lexically scoped, but variables that are declared with defvar are dynamically scoped. There is a whole range of solutions that rely on lexically scoped bindings -- and in Common Lisp they just won't work. Of course, the fact that Common Lisp has lexical scope means that you can get around this by being very careful about new bindings, and possibly using macros to get around the default dynamic scope -- but again, this requires a much more extensive knowledge than a typical newbie has. Things get even worse than that: if you declare a specific name with a defvar, then that name will be bound dynamically even if they're arguments to functions. This can lead to some extremely difficult to track bugs which manifest themselves in an extremely confusing way (you basically get the wrong value, and you'll have no clue why that happens). Experienced Common Lispers know about it (especially those that have been burnt by it), and will always follow the convention of using stars around dynamically scoped names (eg, *foo*). (And by the way, in Common Lisp jargon, these dynamically scoped variables are called just "special variables" -- which is another source of confusion for newbies.)
The third point was also discussed in some of the previous comments. In fact, Rainer had a pretty good summary of the different options that you have, but he didn't explain just how hard it can make things. The thing is that proper tail-call-optimization (TCO) is one of the fundamental concepts in Scheme. It is important enough that it is a language feature rather than merely an optimization. A typical loop in Scheme is expressed as a tail-calling function (for example, (define (loop) (loop))) and proper Scheme implementations are required to implement TCO which will guarantee that this is, in fact, an infinite loop rather than running for a short while until you blow up the stack space. This is all the essence of Rainer's first non solution, and the reason he labeled it as "BAD".
His third option -- rewriting functional loops (expressed as recursive functions) as Common Lisp loops (dotimes, dolist, and the infamous loop) can work for a few simple cases, but at a very high cost: the fact that Scheme is a language that does proper TCO is not only fundamental to the language -- it is also one of the major themes in the book, so by doing so, you will have lost that point completely. In addition, there are some cases that you just cannot translate Scheme code into a Common Lisp loop construct -- for example, as you work your way through the book, you'll get to implement a meta-circular-interpreter which is an implementation of a mini-Scheme language. It takes a certain click to realize that this meta evaluator implements a language that is itself doing TCO if the language that you implement this evaluator in is itself doing TCO. (Note that I'm talking about the "simple" interpreters -- later in the book you implement this evaluator as something close to a register machine, where you kind of explicitly make it do TCO.) The bottom line to all of this, is that this evaluator -- when implemented in Common Lisp -- will result in a language that is itself not doing TCO. People who are familiar with all of this should not be surprised: after all, the "circularity" of the evaluator means that you're implementing a language with semantics that are very close to the host language -- so in this case you "inherit" the Common Lisp semantics rather than the Scheme TCO semantics. However, this means that your mini-evaluator is now crippled: it has no TCO, so it has no way of doing loops! To get loops in, you will need to implement new constructs in your interpreter, which will usually use the iteration constructs in Common Lisp. But now you're going further away from what's in the book, and you're investing considerable effort in approximately implementing the ideas in SICP to the different language. Note also that all of this is related to the previous point I raised: if you follow the book, then the language that you implement will be lexically scoped, taking it further away from the Common Lisp host language. So overall, you completely lose the "circular" property in what the book calls "meta circular evaluator". (Again, this is something that might not bother you, but it will damage the overall learning experience.) All in all, very few languages get close to Scheme in being able to implement the semantics of the language inside the language as a non-trivial (eg, not using eval) evaluator that easily.
In fact, if you do go with a Common Lisp, then in my opinion, Rainer's second suggestion -- use a Common Lisp implementation that supports TCO -- is the best way to go. However, in Common Lisp this is fundamentally a compiler optimization: so you will likely need to (a) know about the knobs in the implementation that you need to turn to make TCO happen, (b) you will need to make sure that the Common Lisp implementation is actually doing proper TCO, and not just optimization of self calls (which is the much simpler case that is not nearly as important), (c) you would hope that the Common Lisp implementation that does TCO can do so without damaging debugging options (again, since this is considered an optimization in Common Lisp, then turning this knob on, might also be taken by the compiler as saying "I don't care much for debuggability").
Finally, my last point is not too hard to overcome, but it is conceptually the most important one. In Scheme, you have a uniform rule: identifiers have a value, which is determined lexically -- and that's it. It's a very simple language. In Common Lisp, in addition to the historical baggage of sometimes using dynamic scope and sometimes using lexical scope, you have symbols that have two different value -- there's the function value that is used whenever a variable appears at the head of an expression, and there is a different value that is used otherwise. For example, in (foo foo), each of the two instances of foo are interpreted differently -- the first is the function value of foo and the second is its variable value. Again, this is not hard to overcome -- there are a number of constructs that you need to know about to deal with all of this. For example, instead of writing (lambda (x) (x x)) you need to write (lambda (x) (funcall x x)), which makes the function that is being called appear in a variable position, therefore the same value will be used there; another example is (map car something) which you will need to translate to (map #'car something) (or more accurately, you will need to use mapcar which is Common Lisp's equivalent of the car function); yet another thing that you'll need to know is that let binds the value slot of the name, and labels binds the function slot (and has a very different syntax, just like defun and defvar.)
But the conceptual result of all of this is that Common Lispers tend to use higher-order code much less than Schemers, and that goes all the way from the idioms that are common in each language, to what implementations will do with it. (For example, many Common Lisp compilers will never optimize this call: (funcall foo bar), while Scheme compilers will optimize (foo bar) like any function call expression, because there is no other way to call functions.)
Finally, I'll note that much of the above is very good flamewar material: throw any of these issues into a public Lisp or Scheme forum (in particular comp.lang.lisp and comp.lang.scheme), and you'll most likely see a long thread where people explain why their choice is far better than the other, or why some "so called feature" is actually an idiotic decision that was made by language designers that were clearly very drunk at the time, etc etc. But the thing is that these are just differences between the two languages, and eventually people can get their job done in either one. It just happens that if the job is "doing SICP" then Scheme will be much easier considering how it hits each of these issues from the Scheme perspective. If you want to learn Common Lisp, then going with a Common Lisp textbook will leave you much less frustrated.
Using SICP with Common Lisp is possible and fun
You can use Common Lisp for learning with SICP without much problems. The Scheme subset that is used in the book is not very sophisticated. SICP does not use macros and it uses no continuations. There are DELAY and FORCE, which can be written in Common Lisp in a few lines.
Also for a beginner using (function foo) and (funcall foo 1 2 3) is actually better (IMHO !), because the code gets clearer when learning the functional programming parts. You can see where variables and lambda functions are being called/passed.
Tail call optimization in Common Lisp
There is only one big area where using Common Lisp has a drawback: tail call optimization (TCO). Common Lisp does not support TCO in its standard (because of unclear interaction with the rest of the language, not all computer architectures support it directly (think JVM), not all compilers support it (some Lisp Machine), it makes some debugging/tracing/stepping harder, ...).
There are three ways to live with that:
Hope that the stack does not blow out. BAD.
Use a Common Lisp implementation that supports TCO. There are some. See below.
Rewrite the functional loops (and similar constructs) into loops (and similar constructs) using DOTIMES, DO, LOOP, ...
Personally I would recommend 2 or 3.
Common Lisp has excellent and easy to use compilers with TCO support (SBCL, LispWorks, Allegro CL, Clozure CL, ...) and as a development environment use either the built-in ones or GNU Emacs/SLIME.
For use with SICP I would recommend SBCL, since it compiles always by default, has TCO support by default and the compiler catches a lot of coding problems (undeclared variables, wrong argument lists, a bunch of type errors, ...). This helps a lot during learning. Generally make sure the code is compiled, since Common Lisp interpreters will usually not support TCO.
Sometimes it might also helpful to write one or two macros and provide some Scheme function names to make code look a bit more like Scheme. For example you could have a DEFINE macro in Common Lisp.
For the more advanced users, there is an old Scheme implementation written in Common Lisp (called Pseudo Scheme), that should run most of the code in SICP.
My recommendation: if you want to go the extra mile and use Common Lisp, do it.
To make it easier to understand the necessary changes, I've added a few examples - remember, it needs a Common Lisp compiler with support for tail call optimization:
Example
Let's look at this simple code from SICP:
(define (factorial n)
(fact-iter 1 1 n))
(define (fact-iter product counter max-count)
(if (> counter max-count)
product
(fact-iter (* counter product)
(+ counter 1)
max-count)))
We can use it directly in Common Lisp with a DEFINE macro:
(defmacro define ((name &rest args) &body body)
`(defun ,name ,args ,#body))
Now you should use SBCL, CCL, Allegro CL or LispWorks. These compilers support TCO by default.
Let's use SBCL:
* (define (factorial n)
(fact-iter 1 1 n))
; in: DEFINE (FACTORIAL N)
; (FACT-ITER 1 1 N)
;
; caught STYLE-WARNING:
; undefined function: FACT-ITER
;
; compilation unit finished
; Undefined function:
; FACT-ITER
; caught 1 STYLE-WARNING condition
FACTORIAL
* (define (fact-iter product counter max-count)
(if (> counter max-count)
product
(fact-iter (* counter product)
(+ counter 1)
max-count)))
FACT-ITER
* (factorial 1000)
40238726007709....
Another Example: symbolic differentiation
SICP has a Scheme example for differentiation:
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
(else
(error "unknown expression type -- DERIV" exp))))
Making this code run in Common Lisp is easy:
some functions have different names, number? is numberp in CL
CL:COND uses T instead of else
CL:ERROR uses CL format strings
Let's define Scheme names for some functions. Common Lisp code:
(loop for (scheme-symbol fn) in
'((number? numberp)
(symbol? symbolp)
(pair? consp)
(eq? eq)
(display-line print))
do (setf (symbol-function scheme-symbol)
(symbol-function fn)))
Our define macro from above:
(defmacro define ((name &rest args) &body body)
`(defun ,name ,args ,#body))
The Common Lisp code:
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
(define (make-sum a1 a2) (list '+ a1 a2))
(define (make-product m1 m2) (list '* m1 m2))
(define (sum? x)
(and (pair? x) (eq? (car x) '+)))
(define (addend s) (cadr s))
(define (augend s) (caddr s))
(define (product? x)
(and (pair? x) (eq? (car x) '*)))
(define (multiplier p) (cadr p))
(define (multiplicand p) (caddr p))
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
(t
(error "unknown expression type -- DERIV: ~a" exp))))
Let's try it in LispWorks:
CL-USER 19 > (deriv '(* (* x y) (+ x 3)) 'x)
(+ (* (* X Y) (+ 1 0)) (* (+ (* X 0) (* 1 Y)) (+ X 3)))
Streams example from SICP in Common Lisp
See the book code in chapter 3.5 in SICP. We use the additions to CL from above.
SICP mentions delay, the-empty-stream and cons-stream, but does not implement it. We provide here an implementation in Common Lisp:
(defmacro delay (expression)
`(lambda () ,expression))
(defmacro cons-stream (a b)
`(cons ,a (delay ,b)))
(define (force delayed-object)
(funcall delayed-object))
(defparameter the-empty-stream (make-symbol "THE-EMPTY-STREAM"))
Now comes portable code from the book:
(define (stream-null? stream)
(eq? stream the-empty-stream))
(define (stream-car stream) (car stream))
(define (stream-cdr stream) (force (cdr stream)))
(define (stream-enumerate-interval low high)
(if (> low high)
the-empty-stream
(cons-stream
low
(stream-enumerate-interval (+ low 1) high))))
Now Common Lisp differs in stream-for-each:
we need to use cl:progn instead of begin
function parameters need to be called with cl:funcall
Here is a version:
(defmacro begin (&body body) `(progn ,#body))
(define (stream-for-each proc s)
(if (stream-null? s)
'done
(begin (funcall proc (stream-car s))
(stream-for-each proc (stream-cdr s)))))
We also need to pass functions using cl:function:
(define (display-stream s)
(stream-for-each (function display-line) s))
But then the example works:
CL-USER 20 > (stream-enumerate-interval 10 20)
(10 . #<Closure 1 subfunction of STREAM-ENUMERATE-INTERVAL 40600010FC>)
CL-USER 21 > (display-stream (stream-enumerate-interval 10 1000))
10
11
12
...
997
998
999
1000
DONE
Do you already know some Common Lisp? I assume that is what you mean by 'Lisp'. In that case you might want to use it instead of Scheme. If you don't know either, and you are working through SICP solely for the learning experience, then probably you are better off with Scheme. It has much better support for new learners, and you won't have to translate from Scheme to Common Lisp.
There are differences; specifically, SICP's highly functional style is wordier in Common Lisp because you have to quote functions when passing them around and use funcall to call a function bound to a variable.
However, if you want to use Common Lisp, you can try using Eli Bendersky's Common Lisp translations of the SICP code under the tag SICP.
They are similar but not the same.
I believe If you go with Scheme it would be easier.
Edit: Nathan Sanders' comment is correct. It's clearly been a while since I last read the book, but I just checked and it does not use call/cc directly. I've upvoted Nathan's answer.
Whatever you use needs to implement continuations, which SICP uses a lot. Not even all Scheme interpreters implement them, and I'm not aware of any Common Lisp that does.