Perl Regular Expressions + delete line if it starts with # - perl

How to delete lines if they begin with a "#" character using Perl regular expressions?
For example (need to delete the following examples)
line="#a"
line=" #a"
line="# a"
line=" # a"
...
the required syntax
$line =~ s/......../..
or skip loop if line begins with "#"
from my code:
open my $IN ,'<', $file or die "can't open '$file' for reading: $!";
while( defined( $line = <$IN> ) ){
.
.
.

You don't delete lines with s///. (In a loop, you probably want next;)
In the snippet you posted, it would be:
while (my $line = <IN>) {
if ($line =~ /^\s*#/) { next; }
# will skip the rest of the code if a line matches
...
}
Shorter forms /^\s*#/ and next; and next if /^\s*#/; are possible.
perldoc perlre
/^\s*#/
^ - "the beginning of the line"
\s - "a whitespace character"
* - "0 or more times"
# - just a #

Based off Aristotle Pagaltzis's answer you could do:
perl -ni.bak -e'print unless m/^\s*#/' deletelines.txt
Here, the -n switch makes perl put a loop around the code you provide
which will read all the files you pass on the command line in
sequence. The -i switch (for “in-place”) says to collect the output
from your script and overwrite the original contents of each file with
it. The .bak parameter to the -i option tells perl to keep a backup of
the original file in a file named after the original file name with
.bak appended. For all of these bits, see perldoc perlrun.
deletelines.txt (initially):
#a
b
#a
# a
c
# a
becomes:
b
c

Program (Cut & paste whole thing including DATA section, adjust shebang line, run)
#!/usr/bin/perl
use strict;
use warnings;
while(<DATA>) {
next if /^\s*#/; # skip comments
print; # process data
}
__DATA__
# comment
data
# another comment
more data
Output
data
more data

$text ~= /^\s*#.*\n//g
That will delete all of the lines with # in the entire file of $text, without requiring that you loop through each line of the text manually.

Related

Can one concatenate two Perl scripts which use different input record separators?

Two Perl scripts, using different input record separators, work together to convert a LaTeX file into something easily searched for human-readable phrases and sentences. Of course, they could be wrapped together by a single shell script. But I am curious whether they can be incorporated into a single Perl script.
The reason for these scripts: It would be a hassle to find "two three" inside short.tex, for instance. But after conversion, grep 'two three' will return the first paragraph.
For any LaTeX file (here, short.tex), the scripts are invoked as follows.
cat short.tex | try1.pl | try2.pl
try1.pl works on paragraphs. It gets rid of LaTeX comments. It makes sure that each word is separated from its neighbors by a single space, so that no sneaky tabs, form feeds, etc., lurk between words. The resulting paragraph occupies a single line, consisting of visible characters separated by single spaces --- and at the end, a sequence of at least two newlines.
try2.pl slurps the entire file. It makes sure that paragraphs are separated from each other by exactly two newlines. And it ensures that the last line of the file is non-trivial, containing visible character(s).
Can one elegantly concatenate two operations such as these, which depend on different input record separators, into a single Perl script, say big.pl? For instance, could the work of try1.pl and try2.pl be accomplished by two functions or bracketed segments inside the larger script?
Incidentally, is there a Stack Overflow keyword for "input record separator"?
###File try1.pl:
#!/usr/bin/perl
use strict;
use warnings;
use 5.18.2;
local $/ = ""; # input record separator: loop through one paragraph at a time. position marker $ comes only at end of paragraph.
while (<>) {
s/[\x25].*\n/ /g; # remove all LaTeX comments. They start with %
s/[\t\f\r ]+/ /g; # collapse each "run" of whitespace to one single space
s/^\s*\n/\n/g; # any line that looks blank is converted to a pure newline;
s/(.)\n/$1/g; # Any line that does not look blank is joined to the subsequent line
print;
print "\n\n"; # make sure each paragraph is separated from its fellows by newlines
}
###File try2.pl:
#!/usr/bin/perl
use strict;
use warnings;
use 5.18.2;
local $/ = undef; # input record separator: entire text or file is a single record.
while (<>) {
s/[\n][\n]+/\n\n/g; # exactly 2 blank lines separate paragraphs. Like cat -s
s/[\n]+$/\n/; # last line is nontrivial; no blank line at the end
print;
}
###File short.tex:
\paragraph{One}
% comment
two % also 2
three % or 3
% comment
% comment
% comment
% comment
% comment
% comment
So they said%
that they had done it.
% comment
% comment
% comment
Fleas.
% comment
% comment
After conversion:
\paragraph{One} two three
So they said that they had done it.
Fleas.
To combine try1.pl and try2.pl into a single script you could try:
local $/ = "";
my #lines;
while (<>) {
[...] # Same code as in try1.pl except print statements
push #lines, $_;
}
$lines[-1] =~ s/\n+$/\n/;
print for #lines;
A pipe connects the output of one process to the input of another process. Neither one knows about the other nor cares how it operates.
But, putting things together like this breaks the Unix pipeline philosophy of small tools that each excel at a very narrow job. Should you link these two things, you'll always have to do both tasks even if you want one (although you could get into configuration to turn off one, but that's a lot of work).
I process a lot of LaTeX, and I control everything through a Makefile. I don't really care about what the commands look like and I don't even have to remember what they are:
short-clean.tex: short.tex
cat short.tex | try1.pl | try2.pl > $#
Let's do it anyways
I'll limit myself to the constraint of basic concatenation instead of complete rewriting or rearranging, most because there are some interesting things to show.
Consider what happens should you concatenate those two programs by simply adding the text of the second program at the end of the text of the first program.
The output from the original first program still goes to standard output and the second program now doesn't get that output as input.
The input to the program is likely exhausted by the original first program and the second program now has nothing to read. That's fine because it would have read the unprocessed input to the first program.
There are various ways to fix this, but none of them make much sense when you already have two working program that do their job. I'd shove that in the Makefile and forget about it.
But, suppose you do want it all in one file.
Rewrite the first section to send its output to a filehandle connected to a string. It's output is now in the programs memory. This basically uses the same interface, and you can even use select to make that the default filehandle.
Rewrite the second section to read from a filehandle connected to that string.
Alternately, you can do the same thing by writing to a temporary file in the first part, then reading that temporary file in the second part.
A much more sophisticated program would the first program write to a pipe (inside the program) that the second program is simultaneously reading. However, you have to pretty much rewrite everything so the two programs are happening simultaneously.
Here's Program 1, which uppercases most of the letters:
#!/usr/bin/perl
use v5.26;
$|++;
while( <<>> ) { # safer line input operator
print tr/a-z/A-Z/r;
}
and here's Program 2, which collapses whitespace:
#!/usr/bin/perl
use v5.26;
$|++;
while( <<>> ) { # safer line input operator
print s/\s+/ /gr;
}
They work serially to get the job done:
$ perl program1.pl
The quick brown dog jumped over the lazy fox.
THE QUICK BROWN DOG JUMPED OVER THE LAZY FOX.
^D
$ perl program2.pl
The quick brown dog jumped over the lazy fox.
The quick brown dog jumped over the lazy fox.
^D
$ perl program1.pl | perl program2.pl
The quick brown dog jumped over the lazy fox.
THE QUICK BROWN DOG JUMPED OVER THE LAZY FOX.
^D
Now I want to combine those. First, I'll make some changes that don't affect the operation but will make it easier for me later. Instead of using implicit filehandles, I'll make those explicit and one level removed from the actual filehandles:
Program 1:
#!/usr/bin/perl
use v5.26;
$|++;
my $output_fh = \*STDOUT;
while( <<>> ) { # safer line input operator
print { $output_fh } tr/a-z/A-Z/r;
}
Program 2:
#!/usr/bin/perl
$|++;
my $input_fh = \*STDIN;
while( <$input_fh> ) { # safer line input operator
print s/\s+/ /gr;
}
Now I have the chance to change what those filehandles are without disturbing the meat of the program. The while doesn't know or care what that filehandle is, so let's start by writing to a file in Program 1 and reading from that same file in Program 2:
Program 1:
#!/usr/bin/perl
use v5.26;
open my $output_fh, '>', 'program1.out' or die "$!";
while( <<>> ) { # safer line input operator
print { $output_fh } tr/a-z/A-Z/r;
}
close $output_fh;
Program 2:
#!/usr/bin/perl
$|++;
open my $input_fh, '<', 'program1.out' or die "$!";
while( <$input_fh> ) { # safer line input operator
print s/\h+/ /gr;
}
However, you can no longer run these in a pipeline because Program 1 doesn't use standard output and Program 2 doesn't read standard input:
% perl program1.pl
% perl program2.pl
You can, however, now join the programs, shebang and all:
#!/usr/bin/perl
use v5.26;
open my $output_fh, '>', 'program1.out' or die "$!";
while( <<>> ) { # safer line input operator
print { $output_fh } tr/a-z/A-Z/r;
}
close $output_fh;
#!/usr/bin/perl
$|++;
open my $input_fh, '<', 'program1.out' or die "$!";
while( <$input_fh> ) { # safer line input operator
print s/\h+/ /gr;
}
You can skip the file and use a string instead, but at this point, you've gone beyond merely concatenating files and need a little coordination for them to share the scalar with the data. Still, the meat of the program doesn't care how you made those filehandles:
#!/usr/bin/perl
use v5.26;
my $output_string;
open my $output_fh, '>', \ $output_string or die "$!";
while( <<>> ) { # safer line input operator
print { $output_fh } tr/a-z/A-Z/r;
}
close $output_fh;
#!/usr/bin/perl
$|++;
open my $input_fh, '<', \ $output_string or die "$!";
while( <$input_fh> ) { # safer line input operator
print s/\h+/ /gr;
}
So let's go one step further and do what the shell was already doing for us.
#!/usr/bin/perl
use v5.26;
pipe my $input_fh, my $output_fh;
$output_fh->autoflush(1);
while( <<>> ) { # safer line input operator
print { $output_fh } tr/a-z/A-Z/r;
}
close $output_fh;
while( <$input_fh> ) { # safer line input operator
print s/\h+/ /gr;
}
From here, it gets a bit tricky and I'm not going to go to the next step with polling filehandles so one thing can write and the the next thing reads. There are plenty of things that do that for you. And, you're now doing a lot of work to avoid something that was already simple and working.
Instead of all that pipe nonsense, the next step is to separate code into functions (likely in a library), and deal with those chunks of code as named things that hide their details:
use Local::Util qw(remove_comments minify);
while( <<>> ) {
my $result = remove_comments($_);
$result = minify( $result );
...
}
That can get even fancier where you simply go through a series of steps without knowing what they are or how many of them there will be. And, since all the baby steps are separate and independent, you're basically back to the pipeline notion:
use Local::Util qw(get_input remove_comments minify);
my $result;
my #steps = qw(get_input remove_comments minify)
while( ! eof() ) { # or whatever
no strict 'refs'
$result = &{$_}( $result ) for #steps;
}
A better way makes that an object so you can skip the soft reference:
use Local::Processor;
my #steps = qw(get_input remove_comments minify);
my $processer = Local::Processor->new( #steps );
my $result;
while( ! eof() ) { # or whatever
$result = $processor->$_($result) for #steps;
}
Like I did before, the meat of the program doesn't care or know about the steps ahead of time. That means that you can move the sequence of steps to configuration and use the same program for any combination and sequence:
use Local::Config;
use Local::Processor;
my #steps = Local::Config->new->get_steps;
my $processer = Local::Processor->new;
my $result;
while( ! eof() ) { # or whatever
$result = $processor->$_($result) for #steps;
}
I write quite a bit about this sort of stuff in Mastering Perl and Effective Perl Programming. But, because you can do it doesn't mean you should. This reinvents a lot that make can already do for you. I don't do this sort of thing without good reason—bash and make have to be pretty annoying to motivate me to go this far.
The motivating problem was to generate a "cleaned" version of a LaTeX file, which would be easy to search, using regex, for complex phrases or sentences.
The following single Perl script does the job, whereas previously I required one shell script and two Perl scripts, entailing three invocations of Perl. This new, single script incorporates three consecutive loops, each with a different input record separator.
First loop:
input = STDIN, or a file passed as argument; record separator=default, loop by line; print result to fileafterperlLIN, a temporary
file on the hard drive.
Second loop:
input = fileafterperlLIN;
record separator = "", loop by paragraph;
print result to fileafterperlPRG, a temporary file on the hard drive.
Third loop:
input = fileafterperlPRG;
record separator = undef, slurp entire file
print result to STDOUT
This has the disadvantage of printing to and reading from two files on the hard drive, which may slow it down. Advantages are that the operation seems to require only one process; and all the code resides in a single file, which should make it easier to maintain.
#!/usr/bin/perl
# 2019v04v05vFriv17h18m41s
use strict;
use warnings;
use 5.18.2;
my $diagnose;
my $diagnosticstring;
my $exitcode;
my $userName = $ENV{'LOGNAME'};
my $scriptpath;
my $scriptname;
my $scriptdirectory;
my $cdld;
my $fileafterperlLIN;
my $fileafterperlPRG;
my $handlefileafterperlLIN;
my $handlefileafterperlPRG;
my $encoding;
my $count;
sub diagnosticmessage {
return unless ( $diagnose );
print STDERR "$scriptname: ";
foreach $diagnosticstring (#_) {
printf STDERR "$diagnosticstring\n";
}
}
# Routine setup
$scriptpath = $0;
$scriptname = $scriptpath;
$scriptname =~ s|.*\x2f([^\x2f]+)$|$1|;
$cdld = "$ENV{'cdld'}"; # A directory to hold temporary files used by scripts
$exitcode = system("test -d $cdld && test -w $cdld || { printf '%\n' 'cdld not a writeable directory'; exit 1; }");
die "$scriptname: system returned exitcode=$exitcode: bail\n" unless $exitcode == 0;
$scriptdirectory = "$cdld/$scriptname"; # To hold temporary files used by this script
$exitcode = system("test -d $scriptdirectory || mkdir $scriptdirectory");
die "$scriptname: system returned exitcode=$exitcode: bail\n" unless $exitcode == 0;
diagnosticmessage ( "scriptdirectory=$scriptdirectory" );
$exitcode = system("test -w $scriptdirectory && test -x $scriptdirectory || exit 1;");
die "$scriptname: system returned exitcode=$exitcode: $scriptdirectory not writeable or not executable. bail\n" unless $exitcode == 0;
$fileafterperlLIN = "$scriptdirectory/afterperlLIN.tex";
diagnosticmessage ( "fileafterperlLIN=$fileafterperlLIN" );
$exitcode = system("printf '' > $fileafterperlLIN;");
die "$scriptname: system returned exitcode=$exitcode: bail\n" unless $exitcode == 0;
$fileafterperlPRG = "$scriptdirectory/afterperlPRG.tex";
diagnosticmessage ( "fileafterperlPRG=$fileafterperlPRG" );
$exitcode=system("printf '' > $fileafterperlPRG;");
die "$scriptname: system returned exitcode=$exitcode: bail\n" unless $exitcode == 0;
# This script's job: starting with a LaTeX file, which may compile beautifully in pdflatex but be difficult
# to read visually or search automatically,
# (1) convert any line that looks blank --- a "trivial line", containing only whitespace --- to a pure newline. This is because
# (a) LaTeX interprets any whitespace line following a non-blank or "nontrivial" line as end of paragraph, whereas
# (b) Perl needs two consecutive newlines to signal end of paragraph.
# (2) remove all LaTeX comments;
# (3) deal with the \unskip LaTeX construct, etc.
# The result will be
# (4) each LaTeX paragraph will occupy a unique line
# (5) exactly one pair of newlines --- visually, one blank line --- will divide each pair of consecutive paragraphs
# (6) first paragraph will be on first line (no opening blank line) and last paragraph will be on last line (no ending blank line)
# (7) whitespace in output will consist of only
# (a) a single space between readable strings, or
# (b) double newline between paragraphs
#
$handlefileafterperlLIN = undef;
$handlefileafterperlPRG = undef;
$encoding = ":encoding(UTF-8)";
diagnosticmessage ( "fileafterperlLIN=$fileafterperlLIN" );
open($handlefileafterperlLIN, ">> $encoding", $fileafterperlLIN) || die "$0: can't open $fileafterperlLIN for appending: $!";
# Loop 1 / line:
# Default input record separator: loop through one line at a time, delimited by \n
$count = 0;
while (<>) {
$count = $count + 1;
diagnosticmessage ( "line $count" );
s/^\s*\n/\n/mg; # Convert any trivial line to a pure newline.
print $handlefileafterperlLIN $_;
}
close($handlefileafterperlLIN);
open($handlefileafterperlLIN, "< $encoding", $fileafterperlLIN) || die "$0: can't open $fileafterperlLIN for reading: $!";
open($handlefileafterperlPRG, ">> $encoding", $fileafterperlPRG) || die "$0: can't open $fileafterperlPRG for appending: $!";
# Loop PRG / paragraph:
local $/ = ""; # Input record separator: loop through one paragraph at a time. position marker $ comes only at end of paragraph.
$count = 0;
while (<$handlefileafterperlLIN>) {
$count = $count + 1;
diagnosticmessage ( "paragraph $count" );
s/(?<!\x5c)[\x25].*\n/ /g; # Remove all LaTeX comments.
# They start with % not \% and extend to end of line or newline character. Join to next line.
# s/(?<!\x5c)([\x24])/\x2a/g; # 2019v04v01vMonv13h44m09s any $ not preceded by backslash \, replace $ by * or something.
# This would be only if we are going to run detex on the output.
s/(.)\n/$1 /g; # Any line that has something other than newline, and then a newline, is joined to the subsequent line
s|([^\x2d])\s*(\x2d\x2d\x2d)([^\x2d])|$1 $2$3|g; # consistent treatment of triple hyphen as em dash
s|([^\x2d])(\x2d\x2d\x2d)\s*([^\x2d])|$1$2 $3|g; # consistent treatment of triple hyphen as em dash, continued
s/[\x0b\x09\x0c\x20]+/ /gm; # collapse each "run" of whitespace other than newline, to a single space.
s/\s*[\x5c]unskip(\x7b\x7d)?\s*(\S)/$2/g; # LaTeX whitespace-collapse across newlines
s/^\s*//; # Any nontrivial line: No indenting. No whitespace in first column.
print $handlefileafterperlPRG $_;
print $handlefileafterperlPRG "\n\n"; # make sure each paragraph ends with 2 newlines, hence at least 1 blank line.
}
close($handlefileafterperlPRG);
open($handlefileafterperlPRG, "< $encoding", $fileafterperlPRG) || die "$0: can't open $fileafterperlPRG for reading: $!";
# Loop slurp
local $/ = undef; # Input record separator: entire file is a single record.
$count = 0;
while (<$handlefileafterperlPRG>) {
$count = $count + 1;
diagnosticmessage ( "slurp $count" );
s/[\n][\n]+/\n\n/g; # Exactly 2 blank lines (newlines) separate paragraphs. Like cat -s
s/[\n]+$/\n/; # Last line is visible or "nontrivial"; no trivial (blank) line at the end
s/^[\n]+//; # No trivial (blank) line at the start. The first line is "nontrivial."
print STDOUT;
}

How to print result STDOUT to a temporary blank new file in the same directory in Perl?

I'm new in Perl, so it's maybe a very basic case that i still can't understand.
Case:
Program tell user to types the file name.
User types the file name (1 or more files).
Program read the content of file input.
If it's single file input, then it just prints the entire content of it.
if it's multi files input, then it combines the contents of each file in a sequence.
And then print result to a temporary new file, which located in the same directory with the program.pl .
file1.txt:
head
a
b
end
file2.txt:
head
c
d
e
f
end
SINGLE INPUT program ioSingle.pl:
#!/usr/bin/perl
print "File name: ";
$userinput = <STDIN>; chomp ($userinput);
#read content from input file
open ("FILEINPUT", $userinput) or die ("can't open file");
#PRINT CONTENT selama ada di file tsb
while (<FILEINPUT>) {
print ; }
close FILEINPUT;
SINGLE RESULT in cmd:
>perl ioSingle.pl
File name: file1.txt
head
a
b
end
I found tutorial code that combine content from multifiles input but cannot adapt the while argument to code above:
while ($userinput = <>) {
print ($userinput);
}
I was stucked at making it work for multifiles input,
How am i suppose to reformat the code so my program could give result like this?
EXPECTED MULTIFILES RESULT in cmd:
>perl ioMulti.pl
File name: file1.txt file2.txt
head
a
b
end
head
c
d
e
f
end
i appreciate your response :)
A good way to start working on a problem like this, is to break it down into smaller sections.
Your problem seems to break down to this:
get a list of filenames
for each file in the list
display the file contents
So think about writing subroutines that do each of these tasks. You already have something like a subroutine to display the contents of the file.
sub display_file_contents {
# filename is the first (and only argument) to the sub
my $filename = shift;
# Use lexical filehandl and three-arg open
open my $filehandle, '<', $filename or die $!;
# Shorter version of your code
print while <$filehandle>;
}
The next task is to get our list of files. You already have some of that too.
sub get_list_of_files {
print 'File name(s): ';
my $files = <STDIN>;
chomp $files;
# We might have more than one filename. Need to split input.
# Assume filenames are separated by whitespace
# (Might need to revisit that assumption - filenames can contain spaces!)
my #filenames = split /\s+/, $files;
return #filenames;
}
We can then put all of that together in the main program.
#!/usr/bin/perl
use strict;
use warnings;
my #list_of_files = get_list_of_files();
foreach my $file (#list_of_files) {
display_file_contents($file);
}
By breaking the task down into smaller tasks, each one becomes easier to deal with. And you don't need to carry the complexity of the whole program in you head at one time.
p.s. But like JRFerguson says, taking the list of files as command line parameters would make this far simpler.
The easy way is to use the diamond operator <> to open and read the files specified on the command line. This would achieve your objective:
while (<>) {
chomp;
print "$_\n";
}
Thus: ioSingle.pl file1.txt file2.txt
If this is the sole objective, you can reduce this to a command line script using the -p or -n switch like:
perl -pe '1' file1.txt file2.txt
perl -ne 'print' file1.txt file2.txt
These switches create implicit loops around the -e commands. The -p switch prints $_ after every loop as if you had written:
LINE:
while (<>) {
# your code...
} continue {
print;
}
Using -n creates:
LINE:
while (<>) {
# your code...
}
Thus, -p adds an implicit print statement.

Summing a column of numbers in a text file using Perl

Ok, so I'm very new to Perl. I have a text file and in the file there are 4 columns of data(date, time, size of files, files). I need to create a small script that can open the file and get the average size of the files. I've read so much online, but I still can't figure out how to do it. This is what I have so far, but I'm not sure if I'm even close to doing this correctly.
#!/usr/bin/perl
open FILE, "files.txt";
##array = File;
while(FILE){
#chomp;
($date, $time, $numbers, $type) = split(/ /,<FILE>);
$total += $numbers;
}
print"the total is $total\n";
This is how the data looks in the file. These are just a few of them. I need to get the numbers in the third column.
12/02/2002 12:16 AM 86016 a2p.exe
10/10/2004 11:33 AM 393 avgfsznew.pl
11/01/2003 04:42 PM 38124 c2ph.bat
Your program is reasonably close to working. With these changes it will do exactly what you want
Always use use strict and use warnings at the start of your program, and declare all of your variables using my. That will help you by finding many simple errors that you may otherwise overlook
Use lexical file handles, the three-parameter form of open, and always check the return status of any open call
Declare the $total variable outside the loop. Declaring it inside the loop means it will be created and destroyed each time around the loop and it won't be able to accumulate a total
Declare a $count variable in the same way. You will need it to calculate the average
Using while (FILE) {...} just tests that FILE is true. You need to read from it instead, so you must use the readline operator like <FILE>
You want the default call to split (without any parameters) which will return all the non-space fields in $_ as a list
You need to add a variable in the assignment to allow for athe AM or PM field in each line
Here is a modification of your code that works fine
use strict;
use warnings;
open my $fh, '<', "files.txt" or die $!;
my $total = 0;
my $count = 0;
while (<$fh>) {
my ($date, $time, $ampm, $numbers, $type) = split;
$total += $numbers;
$count += 1;
}
print "The total is $total\n";
print "The count is $count\n";
print "The average is ", $total / $count, "\n";
output
The total is 124533
The count is 3
The average is 41511
It's tempting to use Perl's awk-like auto-split option. There are 5 columns; three containing date and time information, then the size and then the name.
The first version of the script that I wrote is also the most verbose:
perl -n -a -e '$total += $F[3]; $num++; END { printf "%12.2f\n", $total / ($num + 0.0); }'
The -a (auto-split) option splits a line up on white space into the array #F. Combined with the -n option (which makes Perl run in a loop that reads the file name arguments in turn, or standard input, without printing each line), the code adds $F[3] (the fourth column, counting from 0) to $total, which is automagically initialized to zero on first use. It also counts the lines in $num. The END block is executed when all the input is read; it uses printf() to format the value. The + 0.0 ensures that the arithmetic is done in floating point, not integer arithmetic. This is very similar to the awk script:
awk '{ total += $4 } END { print total / NR }'
First drafts of programs are seldom optimal — or, at least, I'm not that good a programmer. Revisions help.
Perl was designed, in part, as an awk killer. There is still a program a2p distributed with Perl for converting awk scripts to Perl (and there's also s2p for converting sed scripts to Perl). And Perl does have an automatic (built-in) variable that keeps track of the number of lines read. It has several names. The tersest is $.; the mnemonic name $NR is available if you use English; in the script; so is $INPUT_LINE_NUMBER. So, using $num is not necessary. It also turns out that Perl does a floating point division anyway, so the + 0.0 part was unnecessary. This leads to the next versions:
perl -MEnglish -n -a -e '$total += $F[3]; END { printf "%12.2f\n", $total / $NR; }'
or:
perl -n -a -e '$total += $F[3]; END { printf "%12.2f\n", $total / $.; }'
You can tune the print format to suit your whims and fancies. This is essentially the script I'd use in the long term; it is fairly clear without being long-winded in any way. The script could be split over multiple lines if you desired. It is a simple enough task that the legibility of the one-line is not a problem, IMNSHO. And the beauty of this is that you don't have to futz around with split and arrays and read loops on your own; Perl does most of that for you. (Granted, it does blow up on empty input; that fix is trivial; see below.)
Recommended version
perl -n -a -e '$total += $F[3]; END { printf "%12.2f\n", $total / $. if $.; }'
The if $. tests whether the number of lines read is zero or not; the printf and division are omitted if $. is zero so the script outputs nothing when given no input.
There is a noble (or ignoble) game called 'Code Golf' that was much played in the early days of Stack Overflow, but Code Golf questions are no longer considered good questions. The object of Code Golf is to write a program that does a particular task in as few characters as possible. You can play Code Golf with this and compress it still further if you're not too worried about the format of the output and you're using at least Perl 5.10:
perl -Mv5.10 -n -a -e '$total += $F[3]; END { say $total / $. if $.; }'
And, clearly, there are a lot of unnecessary spaces and letters in there:
perl -Mv5.10 -nae '$t+=$F[3];END{say$t/$.if$.}'
That is not, however, as clear as the recommended version.
#!/usr/bin/perl
use warnings;
use strict;
open my $file, "<", "files.txt";
my ($total, $cnt);
while(<$file>){
$total += (split(/\s+/, $_))[3];
$cnt++;
}
close $file;
print "number of files: $cnt\n";
print "total size: $total\n";
printf "avg: %.2f\n", $total/$cnt;
Or you can use awk:
awk '{t+=$4} END{print t/NR}' files.txt
Try doing this :
#!/usr/bin/perl -l
use strict; use warnings;
open my $file, '<', "my_file" or die "open error [$!]";
my ($total, $count);
while (<$file>){
chomp;
next if /^$/;
my ($date, $time, $x, $numbers, $type) = split;
$total += $numbers;
$count++;
}
print "the average is " . $total/$count . " and the total is $total";
close $file;
It is as simple as this:
perl -F -lane '$a+=$F[3];END{print "The average size is ".$a/$.}' your_file
tested below:
> cat temp
12/02/2002 12:16 AM 86016 a2p.exe
10/10/2004 11:33 AM 393 avgfsznew.pl
11/01/2003 04:42 PM 38124 c2ph.bat
Now the execution:
> perl -F -lane '$a+=$F[3];END{print "The average size is ".$a/$.}' temp
The average size is 41511
>
explanation:
-F -a says store the line in an array format.with the default separator as space or tab.
so nopw $F[3] has you size of the file.
sum up all the sizes in the 4th column untill all the lines are processed.
END will be executed after processing all the lines in the file.
so $. at the end will gives the number of lines.
so $a/$. will give the average.
This solution opens the file and loops through each line of the file. It then splits the file into the five variables in the line by splitting on 1 or more spaces.
open the file for reading, "<", and if it fails, raise an error or die "..."
my ($total, $cnt) are our column total and number of files added count
while(<FILE>) { ... } loops through each line of the file using the file handle and stores the line in $_
chomp removes the input record separator in $_. In unix, the default separator is a newline \n
split(/\s+/, $_) Splits the current line represented by$_, with the delimiter \s+. \s represents a space, the + afterward means "1 or more". So, we split the next line on 1 or more spaces.
Next we update $total and $cnt
#!/usr/bin/perl
open FILE, "<", "files.txt" or die "Error opening file: $!";
my ($total, $cnt);
while(<FILE>){
chomp;
my ($date, $time, $am_pm, $numbers, $type) = split(/\s+/, $_);
$total += $numbers;
$cnt++;
}
close FILE;
print"the total is $total and count of $cnt\n";`

Perl: How to add a line to sorted text file

I want to add a line to the text file in perl which has data in a sorted form. I have seen examples which show how to append data at the end of the file, but since I want the data in a sorted format.
Please guide me how can it be done.
Basically from what I have tried so far :
(I open a file, grep its content to see if the line which I want to add to the file already exists. If it does than exit else add it to the file (such that the data remains in a sorted format)
open(my $FH, $file) or die "Failed to open file $file \n";
#file_data = <$FH>;
close($FH);
my $line = grep (/$string1/, #file_data);
if($line) {
print "Found\n";
exit(1);
}
else
{
#add the line to the file
print "Not found!\n";
}
Here's an approach using Tie::File so that you can easily treat the file as an array, and List::BinarySearch's bsearch_str_pos function to quickly find the insert point. Once you've found the insert point, you check to see if the element at that point is equal to your insert string. If it's not, splice it into the array. If it is equal, don't splice it in. And finish up with untie so that the file gets closed cleanly.
use strict;
use warnings;
use Tie::File;
use List::BinarySearch qw(bsearch_str_pos);
my $insert_string = 'Whatever!';
my $file = 'something.txt';
my #array;
tie #array, 'Tie::File', $file or die $!;
my $idx = bsearch_str_pos $insert_string, #array;
splice #array, $idx, 0, $insert_string
if $array[$idx] ne $insert_string;
untie #array;
The bsearch_str_pos function from List::BinarySearch is an adaptation of a binary search implementation from Mastering Algorithms with Perl. Its convenient characteristic is that if the search string isn't found, it returns the index point where it could be inserted while maintaining the sort order.
Since you have to read the contents of the text file anyway, how about a different approach?
Read the lines in the file one-by-one, comparing against your target string. If you read a line equal to the target string, then you don't have to do anything.
Otherwise, you eventually read a line 'greater' than your current line according to your sort criteria, or you hit the end of the file. In the former case, you just insert the string at that position, and then copy the rest of the lines. In the latter case, you append the string to the end.
If you don't want to do it that way, you can do a binary search in #file_data to find the spot to add the line without having to examine all of the entries, then insert it into the array before outputting the array to the file.
Here's a simple version that reads from stdin (or filename(s) specified on command line) and appends 'string to append' to the output if it's not found in the input. Outuput is printed on stdout.
#! /usr/bin/perl
$found = 0;
$append='string to append';
while(<>) {
$found = 1 if (m/$append/o);
print
}
print "$append\n" unless ($found);;
Modifying it to edit a file in-place (with perl -i) and taking the append string from the command line would be quite simple.
A 'simple' one-liner to insert a line without using any module could be:
perl -ni -le '$insert="lemon"; $eq=($insert cmp $_); if ($eq == 0){$found++}elsif($eq==-1 && !$found){print$insert} print'
giver a list.txt whose context is:
ananas
apple
banana
pear
the output is:
ananas
apple
banana
lemon
pear
{
local ($^I, #ARGV) = ("", $file); # Enable in-place editing of $file
while (<>) {
# If we found the line exactly, bail out without printing it twice
last if $_ eq $insert;
# If we found the place where the line should be, insert it
if ($_ gt $insert) {
print $insert;
print;
last;
}
print;
}
# We've passed the insertion point, now output the rest of the file
print while <>;
}
Essentially the same answer as pavel's, except with a lot of readability added. Note that $insert should already contain a trailing newline.

Perl Syntax Error : Sample Program to read a file

I am getting the an error while reading a file and below is the script.
#!/bin/bash
$file = "SampleLogFile.txt"; #--- line 2
open(MYINPUTFILE,$file); #--- line 3
while(<**MYINPUTFILE**>) {
# Good practice to store $_ value because
# subsequent operations may change it.
my($line) = $_;
# Good practice to always strip the trailing
# newline from the line.
chomp($line);
# Convert the line to upper case.
print "$line" if $line = ~ /sent/;
}
close (MYINPUTFILE);
Output :
PerlTesting_New.ksh[2]: =: not found
PerlTesting_New.ksh[3]: syntax error at line 3 : `(' unexpected
Any idea what the issue is ?
Change
#!/bin/bash
to
#!/usr/bin/perl
Otherwise Perl will not be interpreting your script. Change path accordingly as per your system
Okay, whoever is teaching you to write Perl like this needs to move out of the nineties.
#!/usr/bin/perl
use strict; # ALWAYS
use warnings; # Also always.
# When you learn more you can selectively turn off bits of strict and warnings
# functionality on an as needed basis.
use IO::File; # A nice OO module for working with files.
my $file_name = "SampleLogFile.txt"; # note that we have to declare $file now.
my $input_fh = IO::File->new( $file_name, '<' ); # Open the file read-only using IO::File.
# You can avoid assignment through $_ by assigning to a variable, even when you use <$fh>
while( my $line = $input_fh->getline() ) {
# chomp($line); # Chomping is usually a good idea.
# In this case it does nothing but screw up
# your output, so I commented it out.
# This does nothing of the sort:
# Convert the line to upper case.
print "$line" if $line = ~ /sent/;
}
You can also do this with a one liner:
perl -pe '$_ = "" unless /sent/;' SampleLogFile.txt
See perlrun for more info on one-liners.
hmm, your first line : #!/bin/bash
/bin/bash : This is the Bash shell.
You may need to change to
!/usr/bin/perl