Zooming in/out and painting in openGL - iphone

I've recently had some issues implementing a zooming feature into a painting application. Please let me start off by giving you some background information.
First, I started off by modifying Apple's glPaint demo app. I think it's a great source, since it shows you how to set up the EAGLView, etc...
Now, what I wanted to do next, was to implement zooming functionality. After doing some research, I tried two different approaches.
1) use glOrthof
2) change the frame size of my EAGLView.
While both ways allow me to perfectly zoom in / out, I experience different problems, when it actually comes to painting while zoomed in.
When I use (1), I have to render the view like this:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrthof(left, right, bottom, top, -1.0f, 1.0f); //those values have been previously calculated
glDisable(GL_BLEND);
//I'm using Apple's Texture2D class here to render an image
[_textures[kTexture_MyImage] drawInRect:[self bounds]];
glEnable(GL_BLEND);
[self swapBuffers];
Now, let's assume I zoom in a little, THEN I paint and after that, I want to zoom out again. In order to get this to work, I need to make sure that "kTexture_MyImage" always contains the latest changes. In order to do that, I need to capture the screen contents after changes have been made and merge them with the original image. The problem here is, that when I zoom in, my screen only shows part of the image (enlarged) and I haven't found a proper way to deal with this yet.
I tried to calculate which part of the screen was enlarged, then do the capturing. After that I'd resize this part to its original size and use yet another method to paste it into the original image at the correct position.
Now, I could go more into detail on how I achieved this, but it's really complicated and I figured, there has to be an easier way. There are already several apps out there, that perfectly do, what I'm trying to achieve, so it must be possible.
As far as approach (2) goes, I can avoid most of the above, since I only change the size of my EAGLView window. However, when painting, the strokes are way off their expected position. I probably need take the zoom level into account when painting and re-calculate the CGPoints in a different way.
However, if you have done similar things in the past or can give me a hint, how I could implement zooming into my painting app, I'd really appreciate it.
Thanks in advance.

Yes, it is definitely possible.
When it comes to paint programs, you should be keeping a linked list or tree of objects to draw for easy insertion / removal. When the user stops painting, (i.e. touchesEnded), you add objects to the data structure containing your scene.
When your user zooms you need to modulate the coordinates of the objects you are drawing with respect to the current viewport, projection, and modelview transforms. In your case, you're not changing the viewport or the modelview transforms so you need only account for the projection transform. You could also implement your zoom using a translation and scale on the modelview matrix but I'll ignore that case for simplicity because it involves inverting the transforms.
The good news is that you are using an orthographic projection so world coordinates correspond to window coordinates when no zooming is in effect. The "world" in your case is a simple canvas that probably corresponds to the size of the device in window coordinates.
Before you add an object to your scene data structure, convert all of the coordinates, using the current projection transform (i.e. the parameters to the glOrthof() call) to world coordinates (i.e. full canvas coordinates). You'll only remain sane if you keep all things in your model in the same coordinate space.
To convert the coordinates, assuming you can never zoom out past full device dimensions in your glOrtho() call, you'll have to scale them down proportional to the ratios of your zoomed ortho dimensions to your unzoomed ortho dimensions then bias them by the difference between your zoomed ortho bottom, left values and those of the original unzoomed ortho values.

Related

Why is my Unity 2.5D textures changing draw order based on camera x position?

I have a problem where images change z drawing depending on the xposition of my camera - the image shows the problem - I want it so the positions of the images dont change drawing order to camera
https://ibb.co/syHLY8d
Looks like the issue is they're exactly the same depth from the camera, and when the camera moves in the X-coordinate, floating point rounding errors cause the depth values to be slightly different and sort in a different way.
To fix this case you need to move one object slightly further away from the camera, although personally I would say this is generally not an issue worth worrying about, lots of games have small sorting issues like this and most people won't notice.

zoom in the GLPaint sample code

i would like to make an app where you can paint like in the GLPaint sample code, but also zoom in to paint in more detail within your painting.
but i get the feeling, that using OpenGL ES 1.0 which is used in the GLPaint app, is pretty difficult to learn and could be a little bit of an overkill for my need.
if i am chaning the main views frame with the setFrame method to zoom with gesturerecognizer, the already painted lines get erased with every change of the frames size.
so i tried to realize it with another idea: in the touchmoves method i add at "many" positions uiimageviews with an image of the brush, it is slower than the glpaint app and a little bit of a memomy management mess, but i donĀ“t see another way to go there.
any suggestions, learn openGL ES 1.0 or 2.0 or trying to realise the last idea
You can certainly achieve what you are doing, however it will require some effort.
Usually zooming is quite straight-forward as most OpenGL scenes typically do not rely on the the accumulation buffer as the GLPaint sample code does.
If you try and just zoom your the view in GLPaint, your new painting will be drawn at some adjusted scale over your original drawing - which is almost certainly not what you want.
A work-around is instead of drawing directly to your presenting screen buffer, you would first render to a texture buffer, then render said texture buffer on a quad (or equivalent). That way the quad scene can be cleared and re-rendered every frame refresh (at any scale you choose) while your paint buffer retains its accumulation buffer.
This has been tested and works.
I am quite sure the image view method will be an overkill after drawing for a few minutes... You can do all the zooming quite nicely with openGL and I suggest you do that. The bast practice would be to create a canvas as large as possible so when you zoom in you will not lose any resolution.
About zooming: Do not try to resize the GL frame or any frame for that matter because even if you manage to do that successfully you will lose resolution. You should use standard matrices to translate and scale the scene or just play around with glOrtho (set its values to the rect you are currently seeing). Once you get that part there are sadly 2 more things to do that require a bit of math, first is you will have to compute the new touch positions in the openGL scene as location in view will not know about your zooming and translating, second is you probably need to scale the brush as well (make smaller when the scene is bigger so you can draw details).
About the canvas: I do suggest you draw to a FBO rather then your main render buffer and present the texture to your main render scene. Note here that FBO will have attached texture and will be a size of power of 2 (create 2048x2048 or 4096x4096 for newer devices) but you will probably just be using some part of it to keep the same ratio as the screen (glViewport should do the job) so you will have to compute the texture coordinates. Overall the drawing mechanism doesn't change much.
So to sum this up, imagine you have a canvas (FBO) to which you apply the brush of certain size and position on touches events, then you use that canvas as a texture and draw it on your main GL view.

Measuring object width

I'd like to develop an iPhone app that does the following:
1. Starts the device camera.
2. Places a layer on the screen containing a stretchable frame for the user to fit to a desired object.
3. Measures the object's width & height.
You may look at this app which does practically what I need and more:
http://itunes.apple.com/us/app/easymeasure-measure-your-camera!/id349530105?mt=8
Notice that it doesn't need to be super accurate and can definitely bear some aberration.
Any clue how to do it?
10x
The clue: Geometry and Trigonometry.
By knowing the camera Field-of-View angles, entering the height of the camera above ground and assuming a planar, i.e. flat, ground, you can use basic geometry and trigonometry to work out everything.

iPhone picking/unproject when in landscape view (projection matrix is rotated)

I am trying to get 'picking' working in a 3D scene, where the view is rotated such that the iPhone is being held in a landscape mode. I'm using OpenGL ES 2.0 (so all shaders, no fixed-function pipeline).
I'm performing the unproject from within the rendering code and immediately drawing the resulting ray using GL_LINES (ray only gets calculated the 1st time that I touch the screen, so afterwards I can move the camera around to observe the resulting line from various angles).
My unproject code/call is fine (lots of examples of gluUnproject online). My matrix-inversion code is fine (even compared with excel for a few matrices). However, the resulting ray is off by at least 5-15 degrees from where I actually 'clicked' (in the Simulator it really is a click, so I'm expecting a lot more precision from the unproject).
My view is rotated to landscape (after I create the perspective-projection matrix, I rotate it around the Z by -90 degrees; the aspect ratio remains at a portrait one). I believe that the problem with the math being off lies here.
Does anyone have any experience doing picking/unprojection with specifically a landscape view?
Is it possible you simply have the field of view off? Assuming you've stuck to something a lot like the traditional pipeline, if you were inverting your modelview matrix then using generic unproject code (ie, code that assumes a 90 degree field of view in both directions to fill eye space) then that would explain it.
A quick diagnostic test is to see how far off it is for different touches. Touches nearer the centre of projection should be closer to the correct answer.
On a screen with square pixels like the iPhone, the aspect ratio is just the proportion of the horizontal field compared to the vertical. So if you want to be unscientific about it, find the field of view you're using, say f, and try multiplying your results by 90/f or f/90. If that doesn't work, try also throwing a factor of 480/320 or 320/480 in there.
A better solution is to follow your code through and figure out what your actual horizontal and vertical fields of view are. And multiply your results by that over 90.

Most effective "architecture" for layered 2D app using OpenGL on iPhone?

I'm working on an iPhone OS app whose primary view is a 2-D OpenGL view (this is a subclass of Apple's EAGLView class, basically setting up an ortho-projected 2D environment) that the user interacts with directly.
Sometimes (not at all times) I'd like to render some controls on top of this baseline GL view-- think like a Heads-Up Display. Note that the baseline view underneath may be scrolling/animating while controls should appear to be fixed on the screen above.
I'm good with Cocoa views in general, and I'm pretty good with CoreGraphics, but I'm green with Open GL, and the EAGLView's operations (and its relationship to CALayers) is fairly opaque to me. I'm not sure how to mix in other elements most effectively (read: best performance, least hassle, etc). I know that in a pinch, I can create and keep around geometry for all the other controls, and render those on top of my baseline geometry every time I paint/swap, and thus just keep everything the user sees on one single view. But I'm less certain about other techniques, such as having another view on top (UIKit/CG or GL?) or somehow creating other layers in my single view, etc.
If people would be so kind to write up some brief observations if they've travelled these roads before, or at least point me to documentation or existing discussion on this issue, I'd greatly appreciate it.
Thanks.
Create your animated view as normal. Render it to a render target. What does this mean? Well, usually, when you 'draw' the polygons to the screen, you're actually doing it to a normal surface (the primary surface), that just so happens to be the one that eventually goes to the screen. Instead of rendering to the screen surface, you can render to any old surface.
Now, your HUD. Will this be exactly the same all the time or will it change? Will only bits of it change?
If all of it changes, you'll need to keep all the HUD geometry and textures in memory, and will have to render them onto your 'scrolling' surface as normal. You can them apply this final, composite render to the screen. I wouldn't worry too much about hassle and performance here -- the HUD can hardly be as complex as the background. You'll have a few textures quads at most?
If all of the hud is static, then you can render it to a separate surface when your app starts, then each frame render from that surface onto the animated surface you're drawing each frame. This way you can unload all the HUD geom and textures right at the start. Of course, it might be the case that the surface takes up more memory -- it depends on what resources your app needs most.
If your had half changes and half not, then technically, you can pre-render the static parts and then render the other parts as you're going along, but this is more hassle than the other two options.
Your two main options depend on the dynamicness of the HUD. If it moves, you will need to redraw it onto your scene every frame. It sucks, but I can hardly imagine that geometry is complex compared to the rest of it. If it's static, you can pre-render and just alpha blend one surface onto another before sending to the screen.
As I said, it all depends on what resources your app will have spare.