I am curious if the code I am using here is a good way of doing this. Basically I am creating a simple model object (in the MVC sense) by lazy instanciating it from within my ViewController. The idea being that the first time I call [[self dataModel] doSomething]; it creates a new (or reuses an existing) object. I was specifically concerned with setting the property and correctly releasing the local alloc, any comments would be much appreciated.
// INTERFACE
DataModel *dataModel;
#property(nonatomic, retain) DataModel *dataModel;
// IMPLEMENTATION
#synthesize dataModel;
// Lazy Instanciation ...
- (DataModel *)model {
if(!dataModel) {
DataModel *tempDataModel = [[DataModel alloc] init];
[self setDataModel:tempDataModel;
[tempDataModel release];
}
return dataModel;
}
// Clean up
- (void)dealloc {
[dataModel release];
[super dealloc];
}
OR: (although I don't really like this as it looks confusing to me)
// Lazy Instanciation ...
- (DataModel *)model {
if(!dataModel) {
[self setDataModel:[[DataModel alloc] init]];
[dataModel release];
}
return dataModel;
}
gary.
The first one is better, and fairly standard and proper. The second form is general bad form. Because it's completely unclear the object you init is the same one that you release. It's always best to think like this:
instiate object
do something with object
release object
In this case "do something with object" happens to be assigning it to a different instance variable. But it really doesn't matter what you do there, the pattern holds true. It's entirely up to the setDataModel: method what happens to the object afterward.
Personally though, I prefer the autorelease for most of these cases. Simply because you have to think about it far less.
DataModel *tempDataModel = [[[DataModel alloc] init] autorelease];
[self setDataModel:tempDataModel];
So the easier pattern to remember is:
instantiate and autorelease object
do something with object
But this is a matter of taste, and many prefer the explicit release.
The first way is clearer, although the effect is the same. Note, however, that if the idea of making dataModel a property and using the accessor's retain mechanism is to keep that all in one place the direct use of the dataModel ivar is breaking that encapsulation.
Actually, there seems to be a bit of a mix-up between this model method and the dataModel property. It would be better to restructure things so that everything is in the dataModel accessor itself, avoiding this slightly awkward redirect:
- (DataModel*) dataModel
{
if ( ! dataModel )
{
// direct ivar access is legit inside the accessor itself
// (at least, I would say so -- no doubt others will disagree!)
dataModel = [[DataModel alloc] init];
}
return dataModel;
}
You might consider overriding the dataModel synthesized getter. Otherwise, it could be a bit confusing with both the dataModel getter and the model messages.
I think you could override your synthesized getter like this:
- (DataModel *)dataModel {
if(!dataModel) {
dataModel = [[DataModel alloc] init];
}
return dataModel;
}
Related
i have some trouble writing a method in Objective-C to make an object nil. Here is some example :
#interface testA : NSObject
{
NSString *a;
}
#property (nonatomic, retain) NSString *a;
+(testA*)initWithA:(NSString *)aString;
-(void)displayA;
-(void)nillify;
#end
#implementation testA
#synthesize a;
+(testA*)initWithA:(NSString *)aString{
testA *tst=[[testA alloc] init];
tst.a=aString;
return [tst autorelease];
}
-(void)displayA{
NSLog(#"%#",self.a);
}
-(void)nillify{
self=nil;
}
- (void)dealloc {
[a release];
[super dealloc];
}
#end
int main(int argc, char **argv){
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
testA *test=[testA initWithA:#"some test"];
[test displayA];
test=nil;
//[test nillify];
NSLog(#"after setting to nil");
[test displayA];
[pool release];
return 0;
}
Apparently , when I set test object to nil and then call some method on it nothing happens , but if i call nillify instead of directly setting it to nil , displayA method works normally like test object is still there. Is there a workaround for nillify method to function properly ?
Your help is much appreciated !
You can't actually do something like this, because setting 'self' to nil only has any effect within the scope of that method (in your case, 'nilify'). You don't have any actual way to effect the values of pointers located on other parts of the stack or in random places in the heap, for example.
Basically any code that holds a reference to some object is responsible for maintaining and clearing those references itself. If you have some use case where random sections of code may need references to "live" objects of some kind, but where you'd want those object references to go away in response to some external event (maybe a user tracking system or something), you could do something with notifications, but the various modules tracking those "live" objects would still be responsible for listening for notifications and cleaning up references when they received them.
The 'nilify' thing, however, can't possibly work.
You cannot do what you're trying to do. self is just a local reference to an object that actually exists elsewhere. Setting it to nil doesn't mean anything. An object doesn't, in general, own itself, and it certainly doesn't control other objects' references to it. It's up to the owning objects to manage its lifetime.
There are a few things wrong with your code.
First, by convention, class names start with an uppercase letter. Please stick to these naming conventions as it will make it harder for other developers to work with your code (and even confuse you).
Next, your initWithName:... According to the naming conventions, a method with init in its name should be an instance method, not a class method. So either name it newWithName: or turn it into an instance method like this:
-(testA*)initWithA:(NSString *)aString{
self = [super init];
if (!self) return nil;
tst.a=aString;
return self;
}
If you keep it as class method (and name it newWithName:) you should not return a autoreleased object since according to the naming conventions method that start with init... or new... return a retained object. If you do not follow these conventions, the static analyzer will give you "false" warnings and it will become useless for you.
Now for the reason your nillify doesn't work: the self is in fact an argument to a method. Under the hood, your nillify method actually has two arguments that you do not see: the self pointer and the selector pointer. This means, self is actually a variable on the stack. And if you overwrite it, you only overwrite that stack variable but that doesn't influence your test variable which is somewhere else.
As an example, consider a method - (void)foo:(NSString *)bar;. The compiler turns it into the equivalent of the C function (void) foo(id self, SEL _cmd, NSString *bar).
I am newbie to iPhone programming. I have the following doubt which is stopping me to go ahead. Please consider the following code:
---------.h------
#interface myClass: UIViewController
{
UIImage *temp;
}
#property (nonatomic, retain) UIImage *temp;
---------.m------
#interface myClass
#synthesize temp;
-(void) dealloc
{
[temp release];
[super dealloc];
}
The above is the only program code. Thats it ... nothing else. Do I need to declare [temp release] in dealloc method even though I am not using the property accessor method in my program at all. What if I don't declare [temp release] in dealloc. Will that create memory leak as I am releasing something which I haven't retained as I am not calling property accessor method.
Also when i print retain count for temp why does it show 0 even though it is getting retained in #property.
Thanks in advance
If no value has ever been assigned to (an instance of) myClass.temp, then there won't be a leak. But you should release it in your dealloc.
#property is only a declaration that instance of myClass will have this property. You need to assign it a value before that value gets retained.
myClass *instance = [[myClass alloc] init];
// instance will now retain the value passed in
// and is therefore responsible for releasing it
instance.temp = [UIImage imageNamed:#"whatever"];
// if instance is not retained anywhere else,
// its dealloc will be called
[instance release];
On a sidenote, you should give your classes names that start with an uppercase
letter, i.e. MyClass. Not required, but makes things clearer.
You can also use self.temp = nil; in your dealloc You're sorta not supposed but it kinda works better and looks cleaner. It's a bit of an iffy subject...
What you are doing is correct. Scroll to the "dealloc" section of this Apple Doc: Declared Properties
Soon, however, these properties will be cleaned up automatically when you synthesize them (in the next Cocoa update) -- that being said, a convention I have personally began to follow so that my code works in the future is setting self.temp = nil; in dealloc instead of sending a release message (read the apple doc i posted, it explains this). The accessor method created at runtime releases the object first, so for me and quite a few other devs, this is a better/safer way of cleaning up declared properties in our dealloc.
Your code is correct.
The general rule is that, for all variables you declare in #interface, you must clean them up in -dealloc. Some variables will need to be released, others just need to be nil'd out, depending on how you've declared the #property.
In your example above, temp may never have been given a value explicitly by you, but the ObjC runtime will have initialized the value of temp to nil when an instance of your class gets allocated.
Sending a -release to a nil object is generally not a problem, so the [temp release] is fine. It's a no-op. When temp has a non-nil value in -dealloc, the [temp release] gets to do its job of freeing up the memory.
If you need temp to have a non-nil value on creation, you'll need to implement the -init method and make sure it gets some value. While your class is legitimate & functional without an -init method, you really should get in the habit including one in every custom class you design.
You'll need the default initializer at a minimum: -init. You may also want to design a more detailed initializer that could be used to give your temp ivar an a value, like -initWithImage:
Here's what you should also be including in your class:
#implementation MyClass
...
- (id) init {
self = [super init];
if (self != nil) {
// The minimal default initializer.
// temp will already have a value of nil, so you don't need necessarily
// need to do anything more, unless temp needs a real value on initialization.
}
return self;
}
- (void) dealloc {
...
}
#end
To implement a more detailed initializer, which would be known as the designated initializer, you would to something like this:
#implementation MyClass
...
- (id) initWithImage:(UIImage *)newImage {
self = [super init];
if (self != nil) {
temp = [newImage retain];
}
return self;
}
// Implement the default initializer using your more detailed initializer.
- (id) init {
// In this default initializer, every new instance comes with a temp image!
return [self initWithImage:[UIImage imageNamed:#"foobar"]];
}
- (void) dealloc {
...
}
#end
Here, the designated initializer -initWithImage: is the authoritative initializer. All other initializers, including -init, get implemented using -initWithImage:.
You get to exercise a lot of discretion over whether to implement any initializers beyond the minimal default initializer. Maybe -init is good enough for your purposes. That's fine. Sometimes more detailed initializers make using the class more convenient. Experience (and the Force) will be your guide.
Note that I didn't use the generated property accessor in either initializer method. If you aren't required by circumstances, you should generally avoid using property accessors in -init methods and -dealloc, primarily because of potential pain-in-the-ass issues with side effects of automatic key-value coding notifications.
The initializer and dealloc methods play a special role in a class. As the class designer, it is your responsibility to set and clean up instance variables in these methods. A good rule of thumb is to leave the use of synthesized property accessors for the callers of your class, and the implementation of other methods in the class.
When doing initialization of an instance, or deallocation, you can and should touch the ivars directly. They're yours. You declared them, so you can handle them directly. When implementing other methods in your class, you generally should use the property accessors.
JeremyP's link to the Cocoa Conceptual documentation on objects is a good one. You should definitely read the sections on Objects, and periodically re-read it as you gain more experience writing custom classes of your own. Eventually, it will all start making sense.
I initialized a class in my singleton called DataModel. Now, from my UIViewController, when I click a button, I have a method that is trying to access that class so that I may add an object to one of its dictionaries. My get/set method passes back the pointer to the class from my singleton, but when I am back in my UIViewController, the class passed back doesn't respond to methods. It's like it's just not there. I think it has something to do with the difference in passing pointers around classes or something. I even tried using the copy method to throw a copy back, but no luck.
UIViewController:
ApplicationSingleton *applicationSingleton = [[ApplicationSingleton alloc] init];
DataModel *dataModel = [applicationSingleton getDataModel];
[dataModel retrieveDataCategory:dataCategory];
Singleton:
ApplicationSingleton *m_instance;
DataModel *m_dataModel;
- (id) init {
NSLog(#"ApplicationSingleton.m initialized.");
self = [super init];
if(self != nil) {
if(m_instance != nil) {
return m_instance;
}
NSLog(#"Initializing the application singleton.");
m_instance = self;
m_dataModel = [[DataModel alloc] init];
}
NSLog(#"ApplicationSingleton init method returning.");
return m_instance;
}
-(DataModel *)getDataModel {
DataModel *dataModel_COPY = [m_dataModel copy];
return dataModel_COPY;
}
For the getDataModel method, I also tried this:
-(DataModel *)getDataModel {
return m_dataModel;
}
In my DataModel retrieveDataCategory method, I couldn't get anything to work. I even just tried putting a NSLog in there but it never would come onto the console.
Any ideas?
Most likely you are sending messages that get ignored, e.g. they're being sent to objects which don't exist/aren't the one you're looking for, and for some reason aren't crashing. This occurs in the case of messaging nil, or possibly other illegitimate values. Although you seem to expect that the m_ variables will be initialized to 0, this is not good form, and furthermore you are not following a very typical objc pattern for your singletons -- m_dataModel should be an ivar of m_instance, and m_instance should probably be declared static, as you probably don't want it accessed from other files directly. In addition, the most likely source of your bug is somehow the -init method, which should never be called on a singleton -- instead do something like this:
+ (ApplicationSingleton *)sharedInstance {
static ApplicationSingleton *instance = nil;
if(!instance) {
instance = [[self alloc] init]; //or whatever custom initializer you would like, furthermore some people just put the initialization code here and leave -init empty
}
return instance;
}
the code you have now leaks because you allocate an object (self) and don't release it before returning a potentially different instance (the shared one if one already exists), such that the newly allocated one is typically lost.
I am a little confused by this snippet of code (presented in the CocoaFundamentals guide) that overrides some of the methods when creating a singleton instance.
static id sharedReactor = nil;
+(id)sharedInstance {
if(sharedReactor == nil) sharedReactor = [[super allocWithZone:NULL] init];
return sharedReactor;
}
.
+(id)allocWithZone:(NSZone *)zone {
return[[self sharedInstance] retain];
}
-(id)retain {
return self;
}
In the code where the singleton instance is created the +sharedInstance method calls [super allocWithZone:NILL] from the superclass (which in my case is NSObject) The allocWithZone above is only called if you attempt to use it to create a new singleton.
The bit I am confused about is the use of retain, especially seeing as retain is also overridden to return self. Can anyone explain this, could it not be written:
+(id)allocWithZone:(NSZone *)zone {
return [self sharedInstance];
}
-(id)retain {
return self;
}
EDIT_001:
Based on comments and reading various posts on the web I have decided to go with the following (see below) I have chosen to go for a shared singleton approach where if needed I would have the option of creating a second or third instance. Also at this stage as I am only using the singleton for the model portion of MVC for a simple iPhone app I have decided to leave thread safety out. I am aware its important and as I get more familiar with iPhone programming I will likely use +initialize instead (keeping in mind the subclass issue where it can be called twice) Also I have added a dealloc, firstly to log a message should the singleton be released, but also to clean things up properly should the singleton be no longer required.
#interface SharedManager : NSObject
+(id)sharedInstance;
#end
#implementation SharedManager
static id myInstance = nil;
+(id)sharedInstance {
if(myInstance == nil) {
myInstance = [[self alloc] init];
}
return myInstance;
}
-(void)dealloc {
NSLog(#"_deal: %#", [self class]);
[super dealloc];
myInstance = nil;
}
#end
In testing I found that I had a set the static variable to nil in the dealloc or it maintained its pointer to the original object. I was initially a little confused by this as I was expecting the scope of the static to be the instance, I guess its the class instead, which makes sense.
cheers gary
First, don't use this code. There is almost never a reason to do all this for a simple singleton. Apple is demonstrating a "Forced Singleton," in that it is impossible to create two of them. It is very rare to really need this. You can almost always use the "shared singleton" approach used by most of the Cocoa objects that have a singleton constructor.
Here's my preferred way of implementing shared singleton:
+ (MYManager *)sharedManager
{
static MYManager *sharedManager = nil;
if (sharedManager == nil)
{
sharedManager = [[self alloc] init];
}
return sharedManager;
}
That's it. No other code is required. Callers who use +sharedManager will get the shared instance. Callers who call +alloc can create unique instances if they really want to. This is how such famous "singletons" as NSNotificationCenter work. If you really want your own private notification center, there is no reason the class should forbid it. This approach has the following advantages:
Less code.
More flexible in cases where a non-shared instance is useful.
Most importantly: the code does what it says it does. A caller who thinks he's making a unique instance with +alloc doesn't encounter surprising "spooky action at a distance" behavior that requires him to know an internal implementation detail of the object.
If you really need a forced singleton because the object in question maps to a unique resource that cannot be shared (and it's really rare to encounter such a situation), then you still shouldn't use +alloc trickery to enforce it. This just masks a programming error of trying to create a new instance. Instead, you should catch the programming error this way:
+ (MYManager *)sharedManager
{
static MYManager *sharedManager = nil;
if (sharedManager == nil)
{
sharedManager = [[self alloc] initSharedManager];
}
return sharedManager;
}
- (id)init
{
NSAssert(NO, #"Attempting to instantiate new instance. Use +sharedManager.");
return nil;
}
// Private method. Obviously don't put this in your .h
- (id)initSharedManager
{
self = [super init];
....
return self;
}
There is a good example of different singleton methods with comments here on SO:
What does your Objective-C singleton look like?
If it helps, the example has a different approach to allocWithZone: which returns nil.
I have a class that contains a few instance methods which need to be called from another class. I know how to do that -
TimeFormatter *myTimeFormatter = [[TimeFormatter alloc] init];
[myTimeFormatter formatTime:time];
However, I don't want to have to alloc and init TimeFormatter every time I need to call one of its methods. (I need to call TimeFormatter's methods from various methods in another class).
I tried putting
TimeFormatter *myTimeFormatter = [[TimeFormatter alloc] init];
"by itself", or not in any blocks, but when I compile, I get an "initializer element is not constant" error.
Any input is greatly appreciated!
You can use the singleton pattern. You can read more about it here.
Specifically, you'd do something like:
static TimeFormatter* gSharedTimeFormatter = nil;
#implementation TimeFormatter
+ (TimeFormatter*)sharedTimeFormatter {
if (!gSharedTimeFormatter) {
#synchronized(self) {
if (!gSharedTimeFormatter) {
gSharedTimeFormatter = [[TimeFormatter alloc] init];
}
}
}
return gSharedTimeFormatter;
}
...
#end
Notice that we check if the variable is null, and if it is, we take a lock, and check again. This way, we incur the locking cost only on the allocation path, which happens only once in the program. This pattern is known as double-checked locking.
However, I don't want to have to alloc and init TimeFormatter every time I need to call one of its methods. (I need to call TimeFormatter's methods from various methods in another class).
I think it's worth clarifying some OOP terminology here.
The reason you need to alloc and init TimeFormatter is because your methods are instance methods. Because they're instance methods, you need an instance, and that's what alloc and init provide. Then you call your methods on (send messages to) the instance ([myTimeFormatter formatTimeString:…]).
The advantage of allowing instances is that you can keep state and settings in each instance, in instance variables, and make the latter into publicly-visible properties. Then you can deliberately have multiple instances, each having its own settings configured by whatever's using that instance.
If you don't need that functionality, you don't need to make these instance methods. You can make them class methods or even C functions, and then you don't need a TimeFormatter instance. With class methods, you send messages directly to the class ([TimeFormatter formatTimeString:…]).
And if you do want settings shared among all instances (and you don't have any state to keep), then you're right that you can just have one instance—a singleton.
The reason for that parenthesis is that shared state is bad, especially if two threads may use the time formatter concurrently. (For that matter, you could say that about settings, too. What if one thread wants seconds and the other doesn't? What if one wants 24-hour and the other wants 12-hour?) Better to have each thread use its own time formatter, so that they don't get tripped up by each other's state.
(BTW, if TimeFormatter is the actual name of your class: You are aware of NSDateFormatter, right? It does let you only format/parse the time.)
Here's a detail example of a sharedMethod. Credit goes here
#implementation SearchData
#synthesize searchDict;
#synthesize searchArray;
- (id)init {
if (self = [super init]) {
NSString *path = [[NSBundle mainBundle] bundlePath];
NSString *finalPath = [path stringByAppendingPathComponent:#"searches.plist"];
searchDict = [[NSDictionary alloc] initWithContentsOfFile:finalPath];
searchArray = [[searchDict allKeys] retain];
}
return self;
}
- (void)dealloc {
[searchDict release];
[searchArray release];
[super dealloc];
}
static SearchData *sharedSingleton = NULL;
+ (SearchData *)sharedSearchData {
#synchronized(self) {
if (sharedSingleton == NULL)
sharedSingleton = [[self alloc] init];
}
return(sharedSingleton);
}
#end
A very nice, and easy, way to setup a Singleton is to use Matt Gallager's SYNTHESIZE_SINGLETON_FOR_CLASS.
It sounds like you want to make TimeFormatter a singleton, where only one instance can be created. Objective-C doesn't make this super easy, but basically you can expose a static method that returns a pointer to TimeFormatter. This pointer will be allocated and initialized the first time in, and every time after that same pointer can be used. This question has some examples of creating a singleton in Objective-C.
You are trying to declare your variable outside the class? If to do it the way you want to do it you gotta declare it as static so
static TimeFormatter *myFormatter=...
From the name of the class though i dont see why you would wnat to keep one instance of your class... you can also do this with a singleton as described above, that is if you want to keep one instance of your class for the app as a whole.