I have been tasked with investigating the integration of MongoDB into SOA, using OpenESB.
From what I have read so far, it seems to me that there is no support for this out of the box with either MongoDB or OpenESB. I would assume that some kind of plugin on OpenESB would be necessary in order to send requests to Mongo (while Mongo is a database, it does not really have a JDBC driver because the semantics don't really match).
Being relatively new to the concepts of SOA, I would appreciate some pointers, links to good documentation/articles, and so-on.
Service Orientation is less about the technology and more about the design. I am cetain you can use these technologies in a SOA without any question, but they are just that, implementation choices. In the same way Java, .NET can be implemenation choices for applications.
Any way back to your question, MongoDB is a persistance store, so in a SOA it would sit behind a service layer that would shield the upstream users from this fact, you could at a later date swop it out with the next most useful, popular, persistance store and the users would be none the wiser.
Same thing for OpenESB, ESB is a pattern you can use to implement certain aspects of service orientation, namely routing, pub/sub, message transformation etc.. Your implementation choice is just OpenESB, so do the same thing, shield the implemenation choice behind a stable interface.
The best way I now of to implement theses interfaces is to create capability focused interfaces, i.e. focused on the what not on the how.
Here are some practical examples of how to build a SOA using WCF, I realise that .Net may not be your implementation choice, but the principles hold true as they as SOA principles.
I would suggest you read articles by Thomas Erl and Roger Sessions, this will give you a firm handle on what SOA is all about.
Building a SOA
SOA Design Pattern
Achieving integrity in a SOA
Why your SOA should be like a VW Beetle
SOA explained for your boss
WCF Service Performance
You need to create MongoDB component for openesb.
1> create wsdl services for integration.
2> java pojo will use java-driver-for-mongo-db.
this component will be generic and communication will be wsdl call with xml payloads.
for transformation you can use xsl's.
Related
I have 2 years in the IT industry,i love to read a lot ,but when i go deep in some subjects i see a lot of contradiction in somes articles,forum or terms that are used interchangeable.
I understand the difference between Soap and Rest.
When we want to communicate between backends, we can use either of these 2 approaches, each with its advantages and disadvantages.
Situation :
If i have an application, which can be monolithic or not, where I have a backend and I will only have a front end that consumes it. Usually we create a Rest Api so that our front end can consume it. But we will never think about exposing our backend with Soap.(Lot of reasons)
Questions:
1 -Is it okay if I say that Rest , in addition to allowing us to exchange information between application and application (backend to backend ), is it also useful when exposing services for our front end? And SOAP is only useful for Server - Server communication?
2 -And finally, if I expose a backend only for a front end, it is ok to say that we expose a web service or conceptually we say that it is a backend for frontend ?
Question 1: No the First question is wrong Assumption. We can say that in SOAP, XML is the only means of communication, while in Rest, the accepted means is JSON, while there are other formats like XML, JSON, PDF, HTML etc. and Ofcourse, XML can be converted back from server into UI Language and XML Request deciphered at Server for a Response. So, its not Ok to say that SOAP is only for Server - Server Communication.
2. No, when you have typically exposed backend only for consumption by a Front end, you can typically say that it is a backend for numerous front end client requests. But IMO, Backend for a front end is a monolithic webapplication, both bundled in WAR. so in that sense, any UI Request can request response from the Back end web service. Hope i am able to clear your understanding about web services.
I see that in your question there are actually 4 embedded independent topics. And probably because they are always used in conjunction it is sometimes tough to understand.
I will give a short answer first:
REST and SOAP both can be used for Client-Server and Server-Server integrations. But the choice will be dependent on the questions like where you want server-side UI technology/client-side UI technology or is it a single page application/portal technology, etc.
If you expose a single-backend for a single-frontend it's technically a BFF although the term BFF is used only in the case where you have separate-backends for each type of frontend application. e.g. one for mobile, one for web, one for IoT devices, etc.
The long answer is to clarify the 4 principles. Let me give a try at this by separating the topics into the below four headings:
1. Backend(Business Layer) vs Backend for frontend(BFF)
In classical 3-tier architecture (UI-Business Layer-Database) world, the middle-layer that consists of the business and integration logic is mostly referred to as backend/business layer.
This layer can be separated from the UI/Frontend using multiple different options like APIs(REST/SOAP), RPC, Servlet Technology, etc. The limitation with this 3-tier architecture is that, it is still tightly coupled to the type of users and use-cases are limited to web/browser based. It is not a good choice when you want to reuse the business-layer for both web and mobile as the mobile applications are required to be light-weight by principle.
That's where we lean on to multi-tier architecture with Backend For Frontend(BFF) as a savior. It's just a methodology to segregate the business-layers based on consumers.
2. Monolith vs SOA vs Microservices(Optimized SOA)
In a monolith world all the code components mostly UI and Business Layer sits in a tightly coupled fashion. The simplest example would be a Java Servlet Pages(JSP) application with Java as Business Layer. These are typically server-side UI technologies.
In Service Oriented Architecture(SOA), the usecases revolve around leveraging reusable business layer functions aka services. Here one would have to deal with UI-Server, Inter-Service and Server-Server integration scenarios. It's heavily service dependent, meaning it's like a spider-web of dependent applications.
The Microservices is an extension of SOA, but the approach is to keep a resource in focus instead of services to reduce the spider-web dependencies. Hence, self-sufficient and standalone service-clusters are the base of micro-services architecture.
3. SOAP vs REST Webservices
SOAP stands for Simple Object Access Protocol, typically used by the business-layer to provide user-defined methods/services to manipulate an object. For example look at the names of the services for accessing a book collection
To get a book getABook()
Get the whole list of books listAllBooks()
Find a book by name searchABook(String name)
Update a book's details updateABookDetails()
On the other hand, REST is representational state transfer which transfers the state of a web-resource to the client using underlying existing HTTP methods. So the above services for accessing a book collection would look like
To get a book /book(HTTP GET)
Get the whole list of books /books(HTTP GET)
Find a book by name /book?name={search}(HTTP GET)
Update a book's details /book/{bookId}(HTTP PATCH/PUT)
4. How to make a correct choice of architecture?
Spot the diversity of the application user groups and usages: This will help to understand the platform(web/mobile/IoT/etc), nature of the application and session-management.
Determine the estimated/required throughput: This will help you to understand the scalability requirements.
How frequently and who will be maintaining the application: This will help to gauge the application and technology complexity, deployment cycles, deployment strategy, appetite for downtime, etc.
In conclusion, always follow the divine rule of KISS: Keep it simple, stupid.
1.)
A webapplication is for H2M communication a webservice is for M2M communication through the web. The interface of the service is more standardized, more structured, so machines can easily use it and parse the messages.
I don't think it matters where your service consumer is, it can run in a browser or it can run on the server. As long as it can communicate with the service on a relative safe channel it is ok.
You design a service usually to decouple it from multiple different consumers, so you don't have to deal with the consumer implementations. This makes sense usually when you have potentially unknown consumers programmed usually by 3rd party programmers you don't even know or want to know about. You version the service or at least the messages to stay compatible with old consumers.
If you have only a single consumer developed by you, then it might be too much extra effort to maintain a service with a quasi-standard interface. You can easily change the code of the consumer when you change the interface of the service, so thinking about interface design, standardization, backward compatibility, etc. does not make much sense. Though you can still use REST or SOAP ad hoc without much design. In this case having a RESTish CRUD API without hypermedia is a better choice I think.
2.)
I think both are good, I would say backend in your scenario.
Does anyone know where is a good example of GWT application with non-Java backend? Something like the "Contacts" application on the official pages of GWT. I'm interested in the following topics specifically (this is how I see the "back" part of the application, but it may be different, of course):
DTO serialization.
Communication layer (the very back one). Should it use generics and work with any abstract DTO? Is there any other proven approach?
Service layer, which uses the communication layer with specific DTOs.
Requests caching. Should it be implemended on the service or communication level?
Good abstraction. So we can easily substitute any parts for testing and other purposes, like using different serializators (e. g. XML, JSON), different servers' behaviors when managing user sessions (URL might change once the user is logged in).
I know, there are many similar topics here, but I haven't found one, which is focused on the structure of the client part.
Use REST on both sides. PHP/Python REST server-side. GWT client-side.
Don't use GWT-RPC.
The following gives a guideline for Java-java REST, but there is leeway to move out of server-side Java. It explains why REST is appropriate.
http://h2g2java.blessedgeek.com/2011/11/gwt-with-jax-rs-aka-rpcrest-part-0.html.
REST is an industry established pattern (Google. Yahoo, in fact every stable-minded establishment deploys REST services).
REST is abstracted as a HTTP level data structure. Which Java, PHP and Python have established libraries to comply to ensure DTO integrity.
Communication layer (the very back one). Should it use generics ???
Don't understand the question or why the question exists. Just use the REST pattern to provide integrity to non-homogeneous language between server and client and to HTTP request/response.
If you are using Java at back-end, there is no escape from using generics. Generics saves code. But using generics extensively needs programmer to have equally extensive visual capacity to visualise the generics. If your back-end is on PHP or Python, are there generics for PHP? Python generics? Might as well stay in Java land or C# land and forget about Java-free service provider.
Did you mean DTO polymorphism? Don't try polymorphism or decide on it until after you have established your service. Then adaptively and with agility introduce polymorphism into your DTOs if you really see the need. But try to avoid it because with JSON data interchange, it gets rather confusing between server and client. Especially if they don't speak the same programming language.
If you are asking HTTP level generics? I don't know of any framework, not SOAP, not REST where you could have generics carried by the XML or JSON. Is there? Generics?
Service layer? REST.
Requests caching? Cache at every appropriate opportunity. Have service-provider cache query results for items common and static to all sessions like menu, menu/drop-down box choices, labels, etc. Cache your history and places.
On GWT side cache records so that forward/backward button will not trigger inadvertent query. Use MVP pattern and history to manage history traversal that might trigger redisplay of info.
If you are talking about unified info abstraction, you should start your project with JAX-RS to define/test the API and perform data abstraction. Without performing any business logic.
Then, once your HTTP-level APIs andDTOs are defined, convert server-side to using language of your choice to proceed to write more complex code.
BTW, I don't dig your terminology "Backend".
We normally use the terminology client-side for service consumer, server-side for service provider, backend for data repository/persistence access, mid-tier or middle-ware for intervening/auxiliary software required to provide mathematical/scientific/graphical analysis/synthesis.
If our terminologies did not coincide, I probably answered this question wrong.
I'm learning how to develop with OSGi in recent days, but facing a lot of problems.
I don't know how to design my client-server system based OSGi with Equinox as framework. Should I use socket connections to implement this or use a distributed model?
I'm also confused whether I need to import some third party packages to support my programming on socket, jdbc, swing, etc, or there're existing packages offered by Equinox or other OSGi open source projects?
First time to ask questions here, can anybody help me?
just take a look at OSGi Remote services implementations (more details in OSGi spec):
Web services (Apache CXF: distributed OSGi) - http://cxf.apache.org/distributed-osgi.html
Eclipse Communication Framework - http://www.eclipse.org/ecf/
Cheers,
Dmytro
The HTTP model is probably the simplest to implement, as opposed to protocols based on low-level socket handling and binary protocols.
The first question I'd ask is what kind of information your clients and server need to exchange. If you can live with HTTP (and in many cases you can), you can just use servlets on the server-side, http client libraries on the client side and a RESTful communications model.
Servlets are easy to implement in OSGi using the HttpService, see for example http://www.osgilook.com/2009/09/08/osgi-http-service-registering-servlets-on-the-fly/
Working with sockets is not more or less complicated in OSGi than it is in 'plain' Java. You design your application in much the same way as you would normally, but gain the benefits of modularity and services by using OSGi.
You could, for instance, decouple connection acceptance and request handling by introducing something like a WorkerFactory, or maybe reuse services on both the client and the server; those are the things that OSGi is good at.
OSGi as a 'technology' (as far as that notion holds water) does not mandate any specific interaction method. The compendium specification mentions Remote Services (a.k.a. Distributed OSGi), but it also contains an HTTP service specification is Servlets are your thing.
In short, just pick the interaction solution that best matches your scenario, and let OSGi help you with the services and modularity.
This is a discussion that seems to reappear regularly in the SOA world. I heard it as far back as '95, but it's probably been a topic of conversation long before that. I definitely have my own opinions about it, but I'd like to hear some good, solid arguments for having a Data Services Layer, and likewise for arguments against having one.
What value does it add to a systems architecture?
What are the inherent pitfalls?
What are common anti-patterns?
Links to articles are definitely acceptable.
To avoid confusion, this article describes the type of Data Service Layer I'm talking about. Essentially, a thin layer above the database that provides SOAP access to data and includes no business logic.
Data services are quite data oriented, for projects without logic always doing crud. For instance, it can suit if you have a log service or a properties service, you will just do the crud to it.
If the domain that involves that DDBB is complex, with complex logic, you will need to manage that logic up to that service (maybe in an orchestration), so you will divide the logic into several services. In that case I think is better to use a thicker unique service (DAL, BLL and SIL) that manage that domain and expose just one interface.
At the end it is another tool, depend of the problem.
For a college project i'm thinking of implementing the business layer in Erlang and then accessing it via multiple front-ends using REST. I would like to avail of OTP features like distributed applications, etc.
My question is how do I expose gen_server calls/casts to other applications? Obviously I could make RPC calls via language specific "bridges" like OTP.net or JInterface, but I want a consistent way to access it like REST.
As already mentioned Yaws or Mochiweb are a great way to go but if you'd like a dead simple way to get your RESTful API done quickly and correctly then use Webmachine. It's a layer on top of Mochiweb that implements proper HTTP behavior based on Alan Dean's amazing HTTP flow diagram and makes it easy to get REST done right.
I'm using it right now to expose a REST API as well as handle a COMET application and it's been pretty easy to do, even for an Erlang newbie such as myself.
I did something similar for my job and found it best to use REST to expose the business layer because even Legacy languages such as SoftwareAG's Natural is able to access it. The best mechanism that I have found in Erlang is to use Mochiweb.
You can find more information about using it from the screencast located at
Erlang In Practice Screencast. Episode 6 is particularly helpful but all of them are excellent.
A resource to walk you through installation is How To Quickly Set Up Ubuntu 8.04 loaded with Erlang, Mochiweb and Nginx and Migrating a native Erlang interface to RESTful Mochiweb (with a bit of TDD) provides a good start if you don't find the screencasts to your liking.
The HTTP flow diagram link is dead. The original version and a updated version created in collaboration between Alan Dean and Justin Sheehy ist also hosted in the Webmachine project: link to latest version of the HTTP Diagramm.
There is valuable approach to design gen_server calls/casts in flavor of REST if possible. You can use messages as
{get, Resource}
{set, Resource, Value} % aka PUT
{delete, Resource}
{add, Resource, Value} % aka POST (possible another names are append, modify or similar)
Then its mapping is easy. You can make some transformation URI->RESOURCE or use identity. For most of your application this should be wort approach and special cases you should handle specially. You can think there will be big margin, where you can't use this approach, but this should be mostly premature optimization.
Do you really mean a RESTful interface or RPC over HTTP? Building a RESTful interface on top of an existing layer is more work than just exposing existing methods via HTTP.
I'd suggest to use mochiweb or yaws to implement a (generic) rpc layer.
Just an update, Webmachine has moved to bitbucket: new link to Webmachine