Question on neural network matlab code - matlab

Hi i found this code somewhere with little info with it.
it's suppose to be a backpropagation neural network code.
but it seem to be lacking of something like weight and bias.
is the code correct? is it test-while-train backpropagation neural network?
thanks
% --- Executes on button press in pushbutton6.
%~~~~~~~~~~~[L1 L2 1];first hidden layer,second & output layer~~~~~
layer = [11 15 1];
myepochs = 30;
attemption = 1; %i;
mytfn = {'tansig' 'tansig' 'purelin'};
%~~~~~~load data~~~~~~~~~~~~~~~~~~~~~~~
m = xlsread('D:\MATLAB\datatrain.csv');
%~~~~~~convert the data in Matrix form~~~~
[row,col] = size(m);
P = m(1:row,1:10)';
T1 = m(1:row, col)'; % target data for training...last column
net = newff([minmax(P)],layer,mytfn,'trainlm'); %nnet
net.trainParam.epochs = myepochs; % how many time newff will repeat the training
net.trainParam.showWindow = true;
net.trainParam.showCommandLine = true;
net = train(net,P,T1); % start training newff with input P and target T1
Y = sim(net,P); % training
save 'net7' net;
% --- Executes on button press in pushbutton4.
%~~~~~~load data~~~~~~~~~~~~~~~~~~~~~~~
mt = xlsread('D:\MATLAB\datatest.csv');
%~~~~~~convert the data in Matrix form~~~~
[row1,col1] = size(mt);
Pt= mt(1:row1,1:10)';
Tt = mt(1:row1, col1)';
load 'net7' -mat;
Yt= sim(net,Pt);
%~~~~~~~final result of the neural network~~~~~~~~
[r,c]=size(Yt);
result=Yt(c);
if result>0.7
error=1-result;
set(handles.edit39,'String','yes')
set(handles.edit40,'String',num2str(error))
set(handles.edit41,'String','Completed')
data1=[num2str(result) ];
fid = fopen('D:\MATLAB\record.csv','a+');
fprintf(fid,[data1,'\n']);
fclose(fid);
else
set(handles.edit39,'String','no')
set(handles.edit40,'String',num2str(result))
set(handles.edit41,'String','Completed')
data1=[num2str(result) ];
fid = fopen('D:\MATLAB\record.csv','a+');
fprintf(fid,[data1,'\n']);
fclose(fid);
end

The code is correct. Neural network weights and biases are stored inside net structure, you can access them via net.IW and net.LW structures. Biases are stored inside net.b. This code train a network using inputs P and targets T1, splitting them in training, testing and validations subsets used during training. Check the documentation for further information about training procedure.

Related

Strange neural network output

I am programming in MATLAB and I am trying to use the Neural Network Toolbox but I have troubles in calculating the output of a network. I will try to explain my problem: I have defined a very simple ANN with one hidden layer and linear activation functions. So if I have an input x, then I expect the output of the hidden layer to be
h = w * x + b
where w are the weights and b the biases. Then I expect my output to be
o = w' * h + b'
where w' are the weights between the hidden layer and the output and b' the biases.
Now the problem is that if I do
o = net(x)
this doesn't happen. Here is my code:
net = feedforwardnet([layer1], 'traincgp');
net = configure(net, Dtrain, Dtrain);
net.trainParam.epochs = 0;
net.IW{1,1} = weights12;
net.LW{2,1} = my_weights;
net.b{1} = bias12;
for ii=1:size(net.layers, 1)
net.layers{ii}.transferFcn = 'purelin';
end;
net = train(net, Dtrain, Dtrain);
As you can see I am training for 0 epochs since this is just a test and I am also using Dtrain both as input and target since I am training an autoencoder. As I said, the problem is that if I calculate the output as I wrote before I get one result, while if I do
output = net(input)
I get another one. What should I do to have the same result?

Matlab Neural Network for Classes - Unseen Data

Say I create a neural network to separate classes:
X1; %Some data in Class 1 100x2
X2; %Some data in Class 2 100x2
classInput = [X1;X2];
negative = zeros(N, 1);
positive = ones(N,1);
classTarget = [positive negative; negative positive];
net = feedforwardnet(20);
net = configure(net, classInput, classTarget);
net = train(net, classInput, classTarget);
%output of training data
output = net(classInput);
I can plot the classes and they are correctly separated:
figure();
hold on
style = {'ro' 'bx'};
for i=1:(2*N)
plot(classInput(i,1),classInput(i,2), style{round(output(i,1))+1});
end
However, how can I apply the network that's just been trained to unseen data? There must be a model which is generated by the network that can be applied to new data?
EDIT: Using sim:
Once the network is trained, if I use sim on the training data:
[Z,Xf,Af] = sim(net,classInput);
The result is as expected. But this only works if the input is of the same size. If for example I want to evalute an individual data point:
[Z1,Xf,Af] = sim(net,[1,2]);
size(Z) == size(Z1), but this clearly doesn't make sense? Surely I can evaluate a single data point?
I'm the OP,
I had assumed that the rows of the input matrices were the data samples and the columns were the "categories", this is the other way around. Transposing the matrices before inputting them to the train() function fixes this.

Neural network not training

I'm trying to set up a custom neural network, but when I train it, it doesn't train : the training process makes 0 iterations! I don't get any errors though, just 0 iterations, and I have no idea why. (The architecture might seem odd to you, it is supposed to be a custom PNN. But before we can even discuss if it makes sense or not, I would like to be able to train it...)
Here is the code
net = network;
net.trainFcn = 'trainlm';
net.performFcn = 'mse';
net.numInputs = 1;
net.numLayers = (2*nbclasses)+1; % (one pattern layer + one summation layer per class) + competition layer
net.inputConnect(1:nbclasses,:) = 1; % connects the input to all pattern layers
for i = 1:nbclasses % Connect the pattern layers to their corresponding summation layers
net.layerConnect(i+nbclasses,i) = 1;
net.layers{i}.size = size(tr_feature,1);
net.layers{i}.transferFcn = 'radbas';
end
for i = (nbclasses+1):(nbclasses*2) % Connect all summation layers to the competition layer
net.layers{i}.size = 1;
net.layerConnect(net.numLayers,i) = 1;
end
net.layers{net.numLayers}.transferFcn = 'compet';
net.outputConnect(1,end) = 1;
net.view;
[net, tr] = train(net,tr_feature',tr_true');
% tr_feature is a 800x2 data matrix, tr_true is the 800x1 corresponding labels
Any idea?
Thanks in advance!

Export a neural network trained with MATLAB in other programming languages

I trained a neural network using the MATLAB Neural Network Toolbox, and in particular using the command nprtool, which provides a simple GUI to use the toolbox features, and to export a net object containing the informations about the NN generated.
In this way, I created a working neural network, that I can use as classifier, and a diagram representing it is the following:
There are 200 inputs, 20 neurons in the first hidden layer, and 2 neurons in the last layer that provide a bidimensional output.
What I want to do is to use the network in some other programming language (C#, Java, ...).
In order to solve this problem, I try to use the following code in MATLAB:
y1 = tansig(net.IW{1} * input + net.b{1});
Results = tansig(net.LW{2} * y1 + net.b{2});
Assuming that input is a monodimensional array of 200 elements, the previous code would work if net.IW{1} is a 20x200 matrix (20 neurons, 200 weights).
The problem is that I noticed that size(net.IW{1}) returns unexpected values:
>> size(net.IW{1})
ans =
20 199
I got the same problem with a network with 10000 input. In this case, the result wasn't 20x10000, but something like 20x9384 (I don't remember the exact value).
So, the question is: how can I obtain the weights of each neuron? And after that, can someone explain me how can I use them to produce the same output of MATLAB?
I solved the problems described above, and I think it is useful to share what I've learned.
Premises
First of all, we need some definitions. Let's consider the following image, taken from [1]:
In the above figure, IW stands for initial weights: they represent the weights of neurons on the Layer 1, each of which is connected with each input, as the following image shows [1]:
All the other weights, are called layer weights (LW in the first figure), that are also connected with each output of the previous layer. In our case of study, we use a network with only two layers, so we will use only one LW array to solve our problems.
Solution of the problem
After the above introduction, we can proceed by dividing the issue in two steps:
Force the number of initial weights to match with the input array length
Use the weights to implement and use the neural network just trained in other programming languages
A - Force the number of initial weights to match with the input array length
Using the nprtool, we can train our network, and at the end of the process, we can also export in the workspace some information about the entire training process. In particular, we need to export:
a MATLAB network object that represents the neural network created
the input array used to train the network
the target array used to train the network
Also, we need to generate a M-file that contains the code used by MATLAB to create the neural network, because we need to modify it and change some training options.
The following image shows how to perform these operations:
The M-code generated will be similar to the following one:
function net = create_pr_net(inputs,targets)
%CREATE_PR_NET Creates and trains a pattern recognition neural network.
%
% NET = CREATE_PR_NET(INPUTS,TARGETS) takes these arguments:
% INPUTS - RxQ matrix of Q R-element input samples
% TARGETS - SxQ matrix of Q S-element associated target samples, where
% each column contains a single 1, with all other elements set to 0.
% and returns these results:
% NET - The trained neural network
%
% For example, to solve the Iris dataset problem with this function:
%
% load iris_dataset
% net = create_pr_net(irisInputs,irisTargets);
% irisOutputs = sim(net,irisInputs);
%
% To reproduce the results you obtained in NPRTOOL:
%
% net = create_pr_net(trainingSetInput,trainingSetOutput);
% Create Network
numHiddenNeurons = 20; % Adjust as desired
net = newpr(inputs,targets,numHiddenNeurons);
net.divideParam.trainRatio = 75/100; % Adjust as desired
net.divideParam.valRatio = 15/100; % Adjust as desired
net.divideParam.testRatio = 10/100; % Adjust as desired
% Train and Apply Network
[net,tr] = train(net,inputs,targets);
outputs = sim(net,inputs);
% Plot
plotperf(tr)
plotconfusion(targets,outputs)
Before start the training process, we need to remove all preprocessing and postprocessing functions that MATLAB executes on inputs and outputs. This can be done adding the following lines just before the % Train and Apply Network lines:
net.inputs{1}.processFcns = {};
net.outputs{2}.processFcns = {};
After these changes to the create_pr_net() function, simply we can use it to create our final neural network:
net = create_pr_net(input, target);
where input and target are the values we exported through nprtool.
In this way, we are sure that the number of weights is equal to the length of input array. Also, this process is useful in order to simplify the porting to other programming languages.
B - Implement and use the neural network just trained in other programming languages
With these changes, we can define a function like this:
function [ Results ] = classify( net, input )
y1 = tansig(net.IW{1} * input + net.b{1});
Results = tansig(net.LW{2} * y1 + net.b{2});
end
In this code, we use the IW and LW arrays mentioned above, but also the biases b, used in the network schema by the nprtool. In this context, we don't care about the role of biases; simply, we need to use them because nprtool does it.
Now, we can use the classify() function defined above, or the sim() function equally, obtaining the same results, as shown in the following example:
>> sim(net, input(:, 1))
ans =
0.9759
-0.1867
-0.1891
>> classify(net, input(:, 1))
ans =
0.9759
-0.1867
-0.1891
Obviously, the classify() function can be interpreted as a pseudocode, and then implemented in every programming languages in which is possibile to define the MATLAB tansig() function [2] and the basic operations between arrays.
References
[1] Howard Demuth, Mark Beale, Martin Hagan: Neural Network Toolbox 6 - User Guide, MATLAB
[2] Mathworks, tansig - Hyperbolic tangent sigmoid transfer function, MATLAB Documentation center
Additional notes
Take a look to the robott's answer and the Sangeun Chi's answer for more details.
Thanks to VitoShadow and robott answers, I can export Matlab neural network values to other applications.
I really appreciate them, but I found some trivial errors in their codes and want to correct them.
1) In the VitoShadow codes,
Results = tansig(net.LW{2} * y1 + net.b{2});
-> Results = net.LW{2} * y1 + net.b{2};
2) In the robott preprocessing codes,
It would be easier extracting xmax and xmin from the net variable than calculating them.
xmax = net.inputs{1}.processSettings{1}.xmax
xmin = net.inputs{1}.processSettings{1}.xmin
3) In the robott postprocessing codes,
xmax = net.outputs{2}.processSettings{1}.xmax
xmin = net.outputs{2}.processSettings{1}.xmin
Results = (ymax-ymin)*(Results-xmin)/(xmax-xmin) + ymin;
-> Results = (Results-ymin)*(xmax-xmin)/(ymax-ymin) + xmin;
You can manually check and confirm the values as follows:
p2 = mapminmax('apply', net(:, 1), net.inputs{1}.processSettings{1})
-> preprocessed data
y1 = purelin ( net.LW{2} * tansig(net.iw{1}* p2 + net.b{1}) + net.b{2})
-> Neural Network processed data
y2 = mapminmax( 'reverse' , y1, net.outputs{2}.processSettings{1})
-> postprocessed data
Reference:
http://www.mathworks.com/matlabcentral/answers/14517-processing-of-i-p-data
This is a small improvement to the great Vito Gentile's answer.
If you want to use the preprocessing and postprocessing 'mapminmax' functions, you have to pay attention because 'mapminmax' in Matlab normalizes by ROW and not by column!
This is what you need to add to the upper "classify" function, to keep a coherent pre/post-processing:
[m n] = size(input);
ymax = 1;
ymin = -1;
for i=1:m
xmax = max(input(i,:));
xmin = min(input(i,:));
for j=1:n
input(i,j) = (ymax-ymin)*(input(i,j)-xmin)/(xmax-xmin) + ymin;
end
end
And this at the end of the function:
ymax = 1;
ymin = 0;
xmax = 1;
xmin = -1;
Results = (ymax-ymin)*(Results-xmin)/(xmax-xmin) + ymin;
This is Matlab code, but it can be easily read as pseudocode.
Hope this will be helpful!
I tried to implement a simply 2-layer NN in C++ using OpenCV and then exported the weights to Android which worked quiet well. I wrote a small script which generates a header file with the learned weights and this is used in the following code snipped.
// Map Minimum and Maximum Input Processing Function
Mat mapminmax_apply(Mat x, Mat settings_gain, Mat settings_xoffset, double settings_ymin){
Mat y;
subtract(x, settings_xoffset, y);
multiply(y, settings_gain, y);
add(y, settings_ymin, y);
return y;
/* MATLAB CODE
y = x - settings_xoffset;
y = y .* settings_gain;
y = y + settings_ymin;
*/
}
// Sigmoid Symmetric Transfer Function
Mat transig_apply(Mat n){
Mat tempexp;
exp(-2*n, tempexp);
Mat transig_apply_result = 2 /(1 + tempexp) - 1;
return transig_apply_result;
}
// Map Minimum and Maximum Output Reverse-Processing Function
Mat mapminmax_reverse(Mat y, Mat settings_gain, Mat settings_xoffset, double settings_ymin){
Mat x;
subtract(y, settings_ymin, x);
divide(x, settings_gain, x);
add(x, settings_xoffset, x);
return x;
/* MATLAB CODE
function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)
x = y - settings_ymin;
x = x ./ settings_gain;
x = x + settings_xoffset;
end
*/
}
Mat getNNParameter (Mat x1)
{
// convert double array to MAT
// input 1
Mat x1_step1_xoffsetM = Mat(1, 48, CV_64FC1, x1_step1_xoffset).t();
Mat x1_step1_gainM = Mat(1, 48, CV_64FC1, x1_step1_gain).t();
double x1_step1_ymin = -1;
// Layer 1
Mat b1M = Mat(1, 25, CV_64FC1, b1).t();
Mat IW1_1M = Mat(48, 25, CV_64FC1, IW1_1).t();
// Layer 2
Mat b2M = Mat(1, 48, CV_64FC1, b2).t();
Mat LW2_1M = Mat(25, 48, CV_64FC1, LW2_1).t();
// input 1
Mat y1_step1_gainM = Mat(1, 48, CV_64FC1, y1_step1_gain).t();
Mat y1_step1_xoffsetM = Mat(1, 48, CV_64FC1, y1_step1_xoffset).t();
double y1_step1_ymin = -1;
// ===== SIMULATION ========
// Input 1
Mat xp1 = mapminmax_apply(x1, x1_step1_gainM, x1_step1_xoffsetM, x1_step1_ymin);
Mat temp = b1M + IW1_1M*xp1;
// Layer 1
Mat a1M = transig_apply(temp);
// Layer 2
Mat a2M = b2M + LW2_1M*a1M;
// Output 1
Mat y1M = mapminmax_reverse(a2M, y1_step1_gainM, y1_step1_xoffsetM, y1_step1_ymin);
return y1M;
}
example for a bias in the header could be this:
static double b2[1][48] = {
{-0.19879, 0.78254, -0.87674, -0.5827, -0.017464, 0.13143, -0.74361, 0.4645, 0.25262, 0.54249, -0.22292, -0.35605, -0.42747, 0.044744, -0.14827, -0.27354, 0.77793, -0.4511, 0.059346, 0.29589, -0.65137, -0.51788, 0.38366, -0.030243, -0.57632, 0.76785, -0.36374, 0.19446, 0.10383, -0.57989, -0.82931, 0.15301, -0.89212, -0.17296, -0.16356, 0.18946, -1.0032, 0.48846, -0.78148, 0.66608, 0.14946, 0.1972, -0.93501, 0.42523, -0.37773, -0.068266, -0.27003, 0.1196}};
Now, that Google published Tensorflow, this became obsolete.
Hence the solution becomes (after correcting all parts)
Here I am giving a solution in Matlab, but if you have tanh() function, you may easily convert it to any programming language. It is for just showing the fields from network object and the operations you need.
Assume you have a trained ann (network object) that you want to export
Assume that the name of the trained ann is trained_ann
Here is the script for exporting and testing.
Testing script compares original network result with my_ann_evaluation() result
% Export IT
exported_ann_structure = my_ann_exporter(trained_ann);
% Run and Compare
% Works only for single INPUT vector
% Please extend it to MATRIX version by yourself
input = [12 3 5 100];
res1 = trained_ann(input')';
res2 = my_ann_evaluation(exported_ann_structure, input')';
where you need the following two functions
First my_ann_exporter:
function [ my_ann_structure ] = my_ann_exporter(trained_netw)
% Just for extracting as Structure object
my_ann_structure.input_ymax = trained_netw.inputs{1}.processSettings{1}.ymax;
my_ann_structure.input_ymin = trained_netw.inputs{1}.processSettings{1}.ymin;
my_ann_structure.input_xmax = trained_netw.inputs{1}.processSettings{1}.xmax;
my_ann_structure.input_xmin = trained_netw.inputs{1}.processSettings{1}.xmin;
my_ann_structure.IW = trained_netw.IW{1};
my_ann_structure.b1 = trained_netw.b{1};
my_ann_structure.LW = trained_netw.LW{2};
my_ann_structure.b2 = trained_netw.b{2};
my_ann_structure.output_ymax = trained_netw.outputs{2}.processSettings{1}.ymax;
my_ann_structure.output_ymin = trained_netw.outputs{2}.processSettings{1}.ymin;
my_ann_structure.output_xmax = trained_netw.outputs{2}.processSettings{1}.xmax;
my_ann_structure.output_xmin = trained_netw.outputs{2}.processSettings{1}.xmin;
end
Second my_ann_evaluation:
function [ res ] = my_ann_evaluation(my_ann_structure, input)
% Works with only single INPUT vector
% Matrix version can be implemented
ymax = my_ann_structure.input_ymax;
ymin = my_ann_structure.input_ymin;
xmax = my_ann_structure.input_xmax;
xmin = my_ann_structure.input_xmin;
input_preprocessed = (ymax-ymin) * (input-xmin) ./ (xmax-xmin) + ymin;
% Pass it through the ANN matrix multiplication
y1 = tanh(my_ann_structure.IW * input_preprocessed + my_ann_structure.b1);
y2 = my_ann_structure.LW * y1 + my_ann_structure.b2;
ymax = my_ann_structure.output_ymax;
ymin = my_ann_structure.output_ymin;
xmax = my_ann_structure.output_xmax;
xmin = my_ann_structure.output_xmin;
res = (y2-ymin) .* (xmax-xmin) /(ymax-ymin) + xmin;
end

How to set output size in Matlab newff method

Summary:
I'm trying to do classification of some images depending on the angles between body parts.
I assume that human body consists of 10 parts(as rectangles) and find the center of each part and calculate the angle of each part by reference to torso.
And I have three action categories:Handwave-Walking-Running.
My goal is to find which test images fall into which action category.
Facts:
TrainSet:1057x10 feature set,1057 stands for number of image.
TestSet:821x10
I want my output to be 3x1 matrice each row showing the percentage of classification for action category.
row1:Handwave
row2:Walking
row3:Running
Code:
actionCat='H';
[train_data_hw train_label_hw] = tugrul_traindata(TrainData,actionCat);
[test_data_hw test_label_hw] = tugrul_testdata(TestData,actionCat);
actionCat='W';
[train_data_w train_label_w] = tugrul_traindata(TrainData,actionCat);
[test_data_w test_label_w] = tugrul_testdata(TestData,actionCat);
actionCat='R';
[train_data_r train_label_r] = tugrul_traindata(TrainData,actionCat);
[test_data_r test_label_r] = tugrul_testdata(TestData,actionCat);
Train=[train_data_hw;train_data_w;train_data_r];
Test=[test_data_hw;test_data_w;test_data_r];
Target=eye(3,1);
net=newff(minmax(Train),[10 3],{'logsig' 'logsig'},'trainscg');
net.trainParam.perf='sse';
net.trainParam.epochs=50;
net.trainParam.goal=1e-5;
net=train(net,Train);
trainSize=size(Train,1);
testSize=size(Test,1);
if(trainSize > testSize)
pend=-1*ones(trainSize-testSize,size(Test,2));
Test=[Test;pend];
end
x=sim(net,Test);
Question:
I'm using Matlab newff method.But my output is always an Nx10 matrice not 3x1.
My input set should be grouped as 3 classes but they are grouped to 10 classes.
Thanks
%% Load data : I generated some random data instead
Train = rand(1057,10);
Test = rand(821,10);
TrainLabels = randi([1 3], [1057 1]);
TestLabels = randi([1 3], [821 1]);
trainSize = size(Train,1);
testSize = size(Test,1);
%% prepare the input/output vectors (1-of-N output encoding)
input = Train'; %'matrix of size numFeatures-by-numImages
output = zeros(3,trainSize); % matrix of size numCategories-by-numImages
for i=1:trainSize
output(TrainLabels(i), i) = 1;
end
%% create net: one hidden layer with 10 nodes (output layer size is infered: 3)
net = newff(input, output, 10, {'logsig' 'logsig'}, 'trainscg');
net.trainParam.perf = 'sse';
net.trainParam.epochs = 50;
net.trainParam.goal = 1e-5;
view(net)
%% training
net = init(net); % initialize
[net,tr] = train(net, input, output); % train
%% performance (on Training data)
y = sim(net, input); % predict
%[err cm ind per] = confusion(output, y);
[maxVals predicted] = max(y); % predicted
cm = confusionmat(predicted, TrainLabels);
acc = sum(diag(cm))/sum(cm(:));
fprintf('Accuracy = %.2f%%\n', 100*acc);
fprintf('Confusion Matrix:\n');
disp(cm)
%% Testing (on Test data)
y = sim(net, Test');
Note how I converted from category label for each instance (1/2/3) to a 1-to-N encoding vector ([100]: 1, [010]: 2, [001]: 3)
Also note that the test set is currently not being used, since by default the input data is divided into train/test/validation. You could achieve your manual division by setting net.divideFcn to the divideind function, and setting the corresponding net.divideParam parameters.
I showed the testing on the same training data, but you could do the same for the Test data.