I have multiple subplots in one figure. The X axis of each plot is the same variable (time). The Y axis on each plot is different (both in what it represents and the magnitude of the data).
I would like a way to zoom in on the time scale on all plots simultaneously. Ideally by using the rectangle zoom tool on one of the plots, and having the other plots change their X limits accordingly. The Y limits should remained unchanged for all of this. Auto fitting the data to fill the plot in the Y direction is acceptable.
(This question is almost identical to Stack Overflow question one Matplotlib/Pyplot: How to zoom subplots together? (except for MATLAB))
Use the built-in linkaxes function as follows:
linkaxes([hAxes1,hAxes2,hAxes3], 'x');
For more advanced linking (not just the x or y axes), use the built-in linkprop function
Use linkaxes as Yair and Amro already suggested. Following is a quick example for your case
ha(1) = subplot(2,1,1); % get the axes handle when you create the subplot
plot([1:10]); % Plot random stuff here as an example
ha(2) = subplot(2,1,2); % get the axes handle when you create the subplot
plot([1:10]+10); % Plot random stuff here as an example
linkaxes(ha, 'x'); % Link all axes in x
You should be able to zoom in all the subplots simultaneously
If there are many subplots, and collecting their axes handle one by one does not seem a clever way to do the job, you can find all the axes handle in the given figure handle by the following commands
figure_handle = figure;
subplot(2,1,1);
plot([1:10]);
subplot(2,1,2);
plot([1:10]+10);
% find all axes handle of type 'axes' and empty tag
all_ha = findobj( figure_handle, 'type', 'axes', 'tag', '' );
linkaxes( all_ha, 'x' );
The first line finds all the objects under figure_handle of type "axes" and empty tag (''). The condition of the empty tag is to exclude the axe handles of legends, whose tag will be legend.
There might be other axes objects in your figure if it's more than just a simple plot. In such case, you need to add more conditions to identify the axes handles of the plots you are interested in.
To link a pair of figures with linkaxes use:
figure;imagesc(data1);
f1h=findobj(gcf,,’type’,’axes’)
figure;imagesc(data2);
f2h=findobj(gcf,,’type’,’axes’)
linkaxes([f1h,f2h],’xy’)
Related
Quite a simple question but just couldn't find the answer online... I want to visualise a point cloud gathered from a lidar. I can plot the individual frames but wanted to loop them to create a "animation". I know how to do it for normal plots with drawnow but can't get it working with a scatter3. If I simply call scatter3 again like I have done in the commented code then the frame that I am viewing in the scatter plot jumps around with every update (Very uncomfortable). How do i get the scatter3 plot to update to the new points without changing the UI of the scatter ie. Still be able to pan and zoom around the visualised point cloud while it loops through.
EDIT: The file is a rosbag file, I cannot attach it because it is 170MB. The problem doesn't happen when using scatter3 in a loop with a normal array seems to be something with using scatter3 to call a PointCloud2 type file using frame = readMessages(rawBag, i).
EDIT: The problem does not seem to be with the axis limits but rather with the view of the axis within the figure window. When the scatter is initialised it is viewed with the positive x to the right side, positive y out of the screen and positive z upwards, as shown in view 1. Then after a short while it jumps to the second view, where the axis have changed, positive x is now out of the screen, positive y to the right and positive z upwards (both views shown in figures). This makes it not possible to view in a loop as it is constantly switching. So basically how to update the plot without calling scatter3(pointCloudData)?
rawBag = rosbag('jackwalking.bag');
frame = readMessages(rawBag, 1);
scatter3(frame{1});
hold on
for i = 1:length(readMessages(rawBag))
disp(i)
frame = readMessages(rawBag, i);
% UPDATE the 3D Scatter %
% drawnow does not work?
% Currently using:
scatter3(frame{1})
pause(.01)
end
The trick is to not use functions such as scatter or plot in an animation, but instead modify the data in the plot that is already there. These functions always reset axes properties, which is why you see the view reset. When modifying the existing plot, the axes are not affected.
The function scatter3 (as do all plotting functions) returns a handle to the graphics object that renders the plot. In the case of scatter3, this handle has three properties of interest here: XData, YData, and ZData. You can update these properties to change the location of the points:
N = 100;
data = randn(N,3) * 40;
h = scatter3(data(:,1),data(:,2),data(:,3));
for ii = 1:500
data = data + randn(N,3);
set(h,'XData',data(:,1),'YData',data(:,2),'ZData',data(:,3));
drawnow
pause(1/5)
end
The new data can be totally different too, it doesn't even need to contain the same number of points.
But when modifying these three properties, you will see the XLim, YLim and ZLim properties of the axes change. That is, the axes will rescale to accommodate all the data. If you need to prevent this, set the axes' XLimMode, YLimMode and ZLimMode to 'manual':
set(gca,'XLimMode','manual','YLimMode','manual','ZLimMode','manual')
When manually setting the limits, the limit mode is always set to manual.
As far as I understood what you describe as "plots jumpying around", the reason for this are the automatically adjusted x,y,z limits of the scatter3 plot. You can change the XLimMode, YLimMode, ZLimMode behaviour to manual to force the axis to stay fixed. You have to provide initial axes limits, though.
% Mock data, since you haven't provided a data sample
x = randn(200,50);
y = randn(200,50);
z = randn(200,50);
% Plot first frame before loop
HS = scatter3(x(:,1), y(:,1), z(:,1));
hold on
% Provide initial axes limits (adjust to your data)
xlim([-5,5])
ylim([-5,5])
zlim([-5,5])
% Set 'LimModes' to 'manual' to prevent auto resaling of the plot
set(gca, 'XLimMode', 'manual', 'YLimMode', 'manual', 'ZLimMode', 'manual')
for i=2:len(x,2)
scatter3(x(:,i), y(:,i), z(:,i))
pause(1)
end
This yields an "animation" of plots, where you can pan and zoom into the data while continuous points are added in the loop
I'm aware of plotyy but in my opinion it's not as intuitive as for example typing subplot(2,3,1) and from that point one working in that particular subplot's environment...
Suppose I have the following data:
a=rand(20,1);
a_cumul=cumsum(a);
I would like to do a plot of a_cumul on the primary (left hand) y-axis and a bar chart of a on the secondary (right hand) y-axis.
I'm well aware that I can do:
plotyy(1:length(a_cumul),a_cumul,1:length(a),a,'plot','bar')
But this is cumbersome and what if I want to for example plot to the secondary y-axis only and not plot to the primary y-axis? In short, I'm looking for whether a solution like this exists:
figure;
switchToPrimaryYAxis; % What to do here??
plot(a_cumul);
% Do some formatting here if needed...
switchToSecondaryYAxis; % What to do here??
bar(a);
Thanks a lot for your help!
Basically plotyy:
creates two superimposed axes
plots the data specified as the first two params on the first axes
plots the data specified as the last two params on the second axes
set the second second axes color to none making it "transparent" so allowing seeing the graph on the first axes
moves the yaxislocation from the standard position (left) to right
You can create a figure, then two axes make make any plot on the two axes by selecting then with axes(h) where h is the handler of the axes.
Then you can write a your own function performing the axes adjustment.
Script to create figure, axes and call the function to adjust the axes
% Generate example data
t1=0:.1:2*pi;
t2=0:.1:4*pi;
y1=sin(t1);
y2=cos(t2);
% Create a "figure"
figure
% Create two axes
a1=axes
a2=axes
% Set the first axes as current axes
axes(a1)
% Plot something
plot(t1,y1,'k','linewidth',2)
% Set the second axes as current axes
axes(a2)
% Plot something
plot(t2,y2,'b','linewidth',2)
grid
% Adjust the axes:
my_plotyy(a1,a2)
Function to adjust the axes - emulating plotyy behaviour
The function requires, as input, the handles of the two axes
function my_plotyy(a1,a2)
set(a1,'ycolor',[0 0 0])
set(a1,'box','on')
% Adjust the second axes:
% change x and y axis color
% move x and y axis location
% set axes color to none (this make it transparend allowing seeing the
% graph on the first axes
set(a2,'ycolor','b')
set(a2,'xcolor','b')
set(a2,'YAxisLocation','right')
set(a2,'XAxisLocation','top')
set(a2,'color','none')
set(a2,'box','off')
Hope this helps.
Suppose that I have 2 figures in MATLAB both of which plot data of size (512x512), however one figure is being plotted by an external program which is sets the axis parameters. The other is being plotted by me (using imagesc). Currently the figures, or rather, the axes are different sizes and my question is, how do I make them equal?.
The reason for my question, is that I would like to export them to pdf format for inclusion in a latex document, and I would like to have them be the same size without further processing.
Thanks in Advance, N
Edit: link to figures
figure 1: (big)
link to smaller figure (i.e. the one whose properties I would like to copy and apply to figure 1)
For this purpose use linkaxes():
% Load some data included with MATLAB
load clown
% Plot a histogram in the first subplot
figure
ax(1) = subplot(211);
hist(X(:),100)
% Create second subplot
ax(2) = subplot(212);
Now link the axes of the two subplots:
linkaxes(ax)
By plotting on the second subplot, the first one will adapt
imagesc(X)
First, you have the following:
Then:
Extending the example to images only:
load clown
figure
imagesc(X)
h(1) = gca;
I = imread('eight.tif');
figure
imagesc(I)
h(2) = gca;
Note that the configurations of the the first handle prevail:
linkaxes(h)
1.Get the handle of your figure and the axes, like this:
%perhaps the easiest way, if you have just this one figure:
myFigHandle=gcf;
myAxHandle=gca;
%if not possible, you have to search for the handles:
myFigHandle=findobj('PropertyName',PropertyValue,...)
%you have to know some property to identify it of course...
%same for the axes!
2.Set the properties, like this:
%set units to pixels (or whatever you prefer to make it easier to compare to the other plot)
set(myFigHandle, 'Units','pixels')
set(myAxHandle, 'Units','pixels')
%set the size:
set(myFigHandle,'Position',[x_0 y_0 width height]) %coordinates on screen!
%set the size of the axes:
set(myAxHandle,'Position',[x_0 y_0 width height]) %coordinates within the figure!
Ok, based on the answer of #Lucius Domitius Ahenoba here is what I came up with:
hgload('fig1.fig'); % figure whose axis properties I would like to copy
hgload('fig2.fig');
figHandles = get(0,'Children');
figHandles = sort(figHandles,1);
ax(1) = findobj(figHandles(1),'type','axes','-not','Tag','legend','-not','Tag','Colorbar');
ax(2) = findobj(figHandles(2),'type','axes','-not','Tag','legend','-not','Tag','Colorbar');
screen_pos1 = get(figHandles(1),'Position');
axis_pos1 = get(ax(1),'Position');
set(figHandles(2),'Position',screen_pos1);
set(ax(2),'Position',axis_pos1);
This is the 'before' result:
and this is the 'after' result:
Almost correct, except that the aspect ratios are still off. Does anybody know how to equalize everything related to the axes? (I realize that I'm not supposed to ask questions when posting answers, however adding the above as a comment was proving a little unwieldy!)
All the three variables I am using to plot are matrix of size 1x1x100. I am using this code line to plot:
hold on;
for i=1:100
plot3(R_L(:,:,i),N_Pc(:,:,i),CO2_molefraction_top_of_window(:,:,i),'o');
xlabel('R_L');
ylabel('N_P_c');
zlabel('CO_2')
end
However, I am not getting the third axis, and hence the third variable CO2_molefraction_top_of_window on the plot. May I know where am I wrong?
Besides the above question, but on the same subject, I want to know if there is any option where I can plot 4 dimensional plot just like the 3 dimensional plot which can be drawn using plot3?
So I had the same problem when using plot3. For some reason, using the hold on command "flattens" the plot. I'm not sure why, but I suspect it has something to do with the operation hold on performs on the plot.
Edit: To clarify, the 3d plot is still there, but the perspective has been forced to change. If you use the "rotate 3D" tool (the one with an arrow around a cube), you can see the graph is 3d, the default perspective is just straight on so only two axes are visible and it appears flat.
Just a note --- you only need to do the xlabel ylabel zlabel commands once (outside the loop).
Also:
is there any reason your matrices are 1x1x100 instead of just 100x1 or 1x100?
Because if you reshape them to 2D you can just do the plotting in one hit.
What do you mean by "missing third axis"? When I run your code (or as close as I can get, since you didn't provide a reproducible example), I do get a 3rd axis:
.
X = rand(1,1,100); % 1x1x100 X matrix
Y = rand(1,1,100); % 1x1x100 Y matrix
Z = rand(1,1,100); % 1x1x100 Z matrix
% Now, we could do a for loop and plot X(:,:,i), Y(:,:,i), Z(:,:,i),
% OR we can just convert the matrix to a vector (since it's 1x1x100 anyway)
% and do the plotting in one go using 'squeeze' (see 'help squeeze').
% squeeze(X) converts it from 1x1x100 (3D matrix) to 100x1 (vector):
plot3(squeeze(X),squeeze(Y),squeeze(Z),'o')
xlabel('x')
ylabel('y')
zlabel('z')
This gives the following, in which you can clearly see three axes:
If it's the gridlines that you want to make the graph look "more 3D", then try grid on (which is in the examples in the Matlab help file for plot3, try help plot3 from the Matlab prompt):
grid on
You will have to clarify "missing third axis" a bit more.
I came across a similar problem and as #Drofdarb's the hold on seems to flatten out one axis. Here is a snippet of my code, hope this helps.
for iter = 1:num_iters:
% hold on;
grid on;
plot3(tita0,tita1, num_iters,'o')
title('Tita0, Tita1')
xlabel('Tita0')
ylabel('Tita1')
zlabel('Iterations')
hold on; % <---- Place here
drawnow
end
As opposed to:
for iter = 1:num_iters:
grid on;
hold on; % <---- Not here
plot3(tita0,tita1, num_iters,'o')
title('Tita0, Tita1')
xlabel('Tita0')
ylabel('Tita1')
zlabel('Iterations')
% hold on;
drawnow
end
I have two two-by-n arrays, representing 2d-points. These two arrays are plotted in the same figure, but in two different subplots. For every point in one of the arrays, there is a corresponding point i the other array. I want to show this correspondance by drawing a line from one of the subplots to the other subplot.
The solutions i have found are something like:
ah=axes('position',[.2,.2,.6,.6],'visible','off'); % <- select your pos...
line([.1,.9],[.1,.9],'parent',ah,'linewidth',5);
This plots a line in the coordinate system given by the axes call. In order for this to work for me i need a way to change coordinate system between the subplots system and the new system. Anybody know how this can be done?
Maybe there is different way of doing this. If so i would love to know.
First you have to convert axes coordinates to figure coordinates. Then you can use ANNOTATION function to draw lines in the figure.
You can use Data space to figure units conversion (ds2nfu) submission on FileExchange.
Here is a code example:
% two 2x5 arrays with random data
a1 = rand(2,5);
a2 = rand(2,5);
% two subplots
subplot(211)
scatter(a1(1,:),a1(2,:))
% Convert axes coordinates to figure coordinates for 1st axes
[xa1 ya1] = ds2nfu(a1(1,:),a1(2,:));
subplot(212)
scatter(a2(1,:),a2(2,:))
% Convert axes coordinates to figure coordinates for 2nd axes
[xa2 ya2] = ds2nfu(a2(1,:),a2(2,:));
% draw the lines
for k=1:numel(xa1)
annotation('line',[xa1(k) xa2(k)],[ya1(k) ya2(k)],'color','r');
end
Make sure your data arrays are equal in size.
Edit: The code above will do data conversion for a current axes. You can also do it for particular axes:
hAx1 = subplot(211);
% ...
[xa1 ya1] = ds2nfu(hAx1, a1(1,:),a1(2,:));
A simple solution is to use the toolbar in the figure window. Just click "insert" and then "Line".