I have many 3D data points, and I wish to find 'connected components' in this graph. This is where clusters are formed that exhibit the following properties:
Each cluster contains points all of which are at most distance from another point in the cluster.
All points in two distinct clusters are at least distance from each other.
This problem is described in the question and answer here.
Is there a MATLAB implementation of such an algorithm built-in or available on the FEX? Simple searches have not thrown up anything useful.
Perhaps a density-based clustering algorithm can be applied in this case. See this related question for a description of the DBscan algorithm.
I do not think that it is possible to satisfy both conditions in all cases.
If you decide to concentrate on the first condition, you can use Complete-Linkage hierarichical clustering, in which points or groups of points are merged based on the maximum distance between any two points. In Matlab, this is implemented in CLUSTERDATA (see help for the individual function steps).
To calculateyour cluster indices, you'd run
clusterIndex = clusterdata(coordiantes,maxDistance,'criterion','distance','linkage','complete','distance','euclidean')
In case you then want to simply eliminate points of different clusters that are less than minDistance apart, you can run pdist between clusters to clean up your connected components.
k-means or k-medoid algorithm may be useful in this case.
Related
I have been experimenting with Lumer-Faieta clustering and I am getting
promising results:
However, as clusters formed I was wondering how to identify the final clusters? Do I run another clustering algorithm to identify the clusters (that seems counter-productive)?
I had the idea of starting each data point in its own cluster. Then, when a laden ant drops a data point, its gets the same cluster as the data points that dominates its neighborhood. The problem with this is that if clusters are broken up, they share share the same cluster number.
I am stuck. Any suggestions?
To solve this problem, I employed DBSCAN as a post processing step. The effect as follows:
Given that we have a projection of a high dimensional problem on a 2D grid, with known distances and uniform densities, DBSCAN is ideal for this problem. Choosing the right value for epsilon and the minimum number of neighbours are trivial (I used 3 for both values). Once the clusters have been identified, it can be projected back to the n-dimension space.
See The 5 Clustering Algorithms Data Scientists Need to Know for a quick overview (and graphic demo) of DBSCAN and some other clustering algorithms.
With sklearn.cluster.AgglomerativeClustering from sklearn I need to specify the number of resulting clusters in advance. What I would like to do instead is to merge clusters until a certain maximum distance between clusters is reached and then stop the clustering process.
Accordingly, the number of clusters might vary depending on the structure of the data. I also do not care about the number of resulting clusters nor the size of the clusters but only that the cluster centroids do not exceed a certain distance.
How can I achieve this?
This pull request for a distance_threshold parameter in scikit-learn's agglomerative clustering may be of interest:
https://github.com/scikit-learn/scikit-learn/pull/9069
It looks like it'll be merged in version 0.22.
EDIT: See my answer to my own question for an example of implementing single linkage clustering with a distance based stopping criterion using scipy.
Use scipy directly instead of sklearn. IMHO, it is much better.
Hierarchical clustering is a three step process:
Compute the dendrogram
Visualize and analyze
Extract branches
But that doesn't fit the supervised-learning-oriented API preference of sklearn, which would like everything to implement a fit, predict API...
SciPy has a function for you:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html#scipy.cluster.hierarchy.fcluster
I'm looking for a method to perform density based clustering. The resulting clusters should have a representative unlike DBSCAN.
Mean-Shift seems to fit those needs but doesn't scale enough for my needs. I have looked into some subspace clustering algorithms and only found CLIQUE using representatives, but this part is not implemented in Elki.
As I noted in the comments on the previous iteration of your question,
https://stackoverflow.com/questions/34720959/dbscan-java-library-with-corepoints
Density-based clustering does not assume there is a center or representative.
Consider the following example image from Wikipedia user Chire (BY-CC-SA 3.0):
Which object should be the representative of the red cluster?
Density-based clustering is about finding "arbitrarily shaped" clusters. These do not have a meaningful single representative object. They are not meant to "compress" your data - this is not a vector quantization method, but structure discovery. But it is the nature of such complex structure that it cannot be reduced to a single representative. The proper representation of such a cluster is the set of all points in the cluster. For geometric understanding in 2D, you can also compute convex hulls, for example, to get an area as in that picture.
Choosing representative objects is a different task. This is not needed for discovering this kind of structure, and thus these algorithms do not compute representative objects - it would waste CPU.
You could choose the object with the highest density as representative of the cluster.
It is a fairly easy modification to DBSCAN to store the neighbor count of every object.
But as Anony-Mousse mentioned, the object may nevertheless be a rather bad choice. Density-based clustering is not designed to yield representative objects.
You could try AffinityPropagation, but it will also not scale very well.
Let me explain what I'm trying to do.
I have plot of an Image's points/pixels in the RGB space.
What I am trying to do is find elongated clusters in this space. I'm fairly new to clustering techniques and maybe I'm not doing things correctly, I'm trying to cluster using MATLAB's inbuilt k-means clustering but it appears as if that is not the best approach in this case.
What I need to do is find "color clusters".
This is what I get after applying K-means on an image.
This is how it should look like:
for an image like this:
Can someone tell me where I'm going wrong, and what I can to do improve my results?
Note: Sorry for the low-res images, these are the best I have.
Are you trying to replicate the results of this paper? I would say just do what they did.
However, I will add since there are some issues with the current answers.
1) Yes, your clusters are not spherical- which is an assumption k-means makes. DBSCAN and MeanShift are two more common methods for handling such data, as they can handle non spherical data. However, your data appears to have one large central clump that spreads outwards in a few finite directions.
For DBSCAN, this means it will put everything into one cluster, or everything is its own cluster. As DBSCAN has the assumption of uniform density and requires that clusters be separated by some margin.
MeanShift will likely have difficulty because everything seems to be coming from one central lump - so that will be the area of highest density that the points will shift toward, and converge to one large cluster.
My advice would be to change color spaces. RGB has issues, and it the assumptions most algorithms make will probably not hold up well under it. What clustering algorithm you should be using will then likely change in the different feature space, but hopefully it will make the problem easier to handle.
k-means basically assumes clusters are approximately spherical. In your case they are definitely NOT. Try fit a Gaussian to each cluster with non-spherical covariance matrix.
Basically, you will be following the same expectation-maximization (EM) steps as in k-means with the only exception that you will be modeling and fitting the covariance matrix as well.
Here's an outline for the algorithm
init: assign each point at random to one of k clusters.
For each cluster estimate mean and covariance
For each point estimate its likelihood to belong to each cluster
note that this likelihood is based not only on the distance to the center (mean) but also on the shape of the cluster as it is encoded by the covariance matrix
repeat stages 2 and 3 until convergence or until exceeded pre-defined number of iterations
Take a look at density-based clustering algorithms, such as DBSCAN and MeanShift. If you are doing this for segmentation, you might want to add pixel coordinates to your vectors.
I've been looking around scipy and sklearn for clustering algorithms for a particular problem I have. I need some way of characterizing a population of N particles into k groups, where k is not necessarily know, and in addition to this, no a priori linking lengths are known (similar to this question).
I've tried kmeans, which works well if you know how many clusters you want. I've tried dbscan, which does poorly unless you tell it a characteristic length scale on which to stop looking (or start looking) for clusters. The problem is, I have potentially thousands of these clusters of particles, and I cannot spend the time to tell kmeans/dbscan algorithms what they should go off of.
Here is an example of what dbscan find:
You can see that there really are two separate populations here, though adjusting the epsilon factor (the max. distance between neighboring clusters parameter), I simply cannot get it to see those two populations of particles.
Is there any other algorithms which would work here? I'm looking for minimal information upfront - in other words, I'd like the algorithm to be able to make "smart" decisions about what could constitute a separate cluster.
I've found one that requires NO a priori information/guesses and does very well for what I'm asking it to do. It's called Mean Shift and is located in SciKit-Learn. It's also relatively quick (compared to other algorithms like Affinity Propagation).
Here's an example of what it gives:
I also want to point out that in the documentation is states that it may not scale well.
When using DBSCAN it can be helpful to scale/normalize data or
distances beforehand, so that estimation of epsilon will be relative.
There is a implementation of DBSCAN - I think its the one
Anony-Mousse somewhere denoted as 'floating around' - , which comes
with a epsilon estimator function. It works, as long as its not fed
with large datasets.
There are several incomplete versions of OPTICS at github. Maybe
you can find one to adapt it for your purpose. Still
trying to figure out myself, which effect minPts has, using one and
the same extraction method.
You can try a minimum spanning tree (zahn algorithm) and then remove the longest edge similar to alpha shapes. I used it with a delaunay triangulation and a concave hull:http://www.phpdevpad.de/geofence. You can also try a hierarchical cluster for example clusterfck.
Your plot indicates that you chose the minPts parameter way too small.
Have a look at OPTICS, which does no longer need the epsilon parameter of DBSCAN.