Protected Members of Other Instances in Scala - scala

I just ran into a difficulty while learning Scala. I have an inheritance hierarchy that is essentially equivalent to this:
class A {
protected def myMethod() = println("myMethod() from A")
}
class B extends A {
def invokeMyMethod(a: A) = a.myMethod()
}
But trying to compile this sample, I get the error "test.scala:7: error: method myMethod cannot be accessed in A".
Coming from Java, my understanding is that protected members should be accessible at any point from a derived class, and nowhere have I seen anything that tells me that protected members in Scala are limited by instance. Does anyone have an explanation for this?

Quoting the Scala Language Specification:
A protected identifier x may be used as a member name in a selection r .x
only if one of the following applies:
– The access is within the template defining the member, or, if a qualification C is given, inside the package C, or the class C, or its companion module, or
– r is one of the reserved words this and super, or
– r ’s type conforms to a type-instance of the class which contains the access.
These three rules define when exactly an instance is allowed to access another instance's protected members. One thing that's interesting to note is that, by the last rule, when B extends A, an instance of A may access protected members of a different instance of B... but an instance of B may not access protected members of another A! In other words:
class A {
protected val aMember = "a"
def accessBMember(b: B) = b.bMember // legal!
}
class B extends A {
protected val bMember = "b"
def accessAMember(a: A) = a.aMember // illegal!
}

Related

Singleton Object vs Companion Object in Class

I have written the following code:
class a {
object c {
var a = "STATIC"
def m() = print("STATIC METHOD")
var f = () => print("STATIC FUNCTION")
}
}
object m {
def main(args: Array[String]) = {
var o = new a()
o.c.m()
}
}
Can I say that the variables, functions and methods that are declared in object c can be static?
If I change name of object c with a then will the object becomes a companion object?
Scala has no true meaning of 'static' that Java does.
The fact that objects have a backing on the JVM that uses static methods / fields is a leaking implementation detail that you only need to deal with if using Java/JVM interop.
Unless you explicitly need that interop, you need to stop thinking of declared objects as 'static' and instead think of them as singletons within their given scope.
An inner object nested under a class, means that there is only ever going to be 1 instance of that object, for each class instance, unlike inner classes which could have multiple instances.
This applies at the top level as well, except that Scala can do additional compatibility with other JVM languages, and mark some of the methods/members as static.
Fields and methods in an object are how Scala declares things that you would have used static for in Java. I guess you can, for intuition sake, say that those fields are usually static (as in only one of those in a JVM at once).
However, in your example, you put an object inside a class, making it no longer static. You can easily check this with a few lines of code (that you can find here on Scastie).
class MyClass {
object Embedded {
val a = "field"
def m = println("method")
}
}
val a = new MyClass().Embedded
val b = new MyClass().Embedded
// prints "a and b are different objects"
if (a eq b)
println("a and b are the same object")
else
println("a and b are different objects")
Regarding your second question: no, class and object must be in the same scope in order for it to be a companion object. You can find more details on the Scala Language Specification.
I quote from there:
Generally, a companion module of a class is an object which has the same name as the class and is defined in the same scope and compilation unit. Conversely, the class is called the companion class of the module.
To answer you questions:
The methods and fields in a.c are not globally static because they need an instance of a to exist. If a were an object, a.c would be static too.
If you want to have a companion object with static fields and methods for your class a it has to be defined outside of a's code block, like this:
class a {
/* non-static stuff goes here */
}
object a {
/* static stuff goes there */
def m() = print("STATIC METHOD")
}
You must keep both in the same file, defining the object or the
class first doesn't matter, so it generally depend on a convention or what makes most sense depending on use case.
If you want to call the static method a.m inside the class a, you will still need to call it a.m and not just m. But the class a will be able to use private fields and methods of object a, because they are companions.
As others already said, static doesn't really exist in Scala, but the concept transpires from Java since Scala is in most cases compiled into java bytecode.
Last advice, the convention is usually the same in Scala and in Java for classes and object: the first-letter of their name should be uppercase (except in some advanced Scala cases)

Scala qualified protected member in subclass

In Scala Language Spec. I found that
A different form of qualification is protected[this]. A member M marked with this modifier is called object-protected; it can be accessed only from within the object in which it is defined. That is, a selection p.M is only legal if the prefix is this or O.this, for some class O enclosing the reference. In addition, the restrictions for unqualified protected apply.
However I understand the case with this
e.g
this.protectedMember
But what I didn't get is
O.this, for some class O enclosing the reference .
please Help..
However as my understanding says that this is something that is realted with inner class as we do in Swing to get the outer class object eg
OuterClass.this.someMethod in anonymous inner class.
The expression C.this is legal in the statement part of an enclosing class or object definition with simple name C. It stands for the object being defined by the innermost such definition.
E.g. you can have
class O {
class I {
// O.this is the instance of O this I instance is nested in
def M = ...
M // calls M in I
O.this.M // calls M in O
}
protected[this] def M = ...
}

Object extends Trait, Class extends Trait, both have to implement method

I have the following setup:
trait A
{
def doSomething(): Unit;
}
object B extends A
{
override def doSomething(): Unit =
{
// Implementation
}
}
class B(creator: String) extends A
{
override def doSomething(): Unit =
{
B.doSomething() // Now this is just completely unnecessary, but the compiler of course insists upon implementing the method
}
}
Now you may wonder why I even do this, why I let the class extend the trait as well.
The problem is, that somewhere in the Program there is a Collection of A.
So somewhere:
private val aList: ListBuffer[A] = new ListBuffer[A]
and in there, I also have to put Bs (among other derivates, namely C and D)
So I can't just let the B-class not extend it.
As the implementation is the same for all instances, I want to use an Object.
But there is also a reason I really need this Object. Because there is a class:
abstract class Worker
{
def getAType(): A
def do(): Unit =
{
getAType().doSomething()
}
}
class WorkerA
{
def getAType(): A =
{
return B
}
}
Here the singleton/object of B gets returned. This is needed for the implementation of do() in the Worker.
To summarize:
The object B is needed because of the generic implementation in do() (Worker-Class) and also because doSomething() never changes.
The class B is needed because in the collection of the BaseType A there are different instances of B with different authors.
As both the object and the class have to implement the trait for above reasons I'm in kind of a dilemma here. I couldn't find a satisfying solution that looks neater.
So, my question is (It turns out as a non-native-speaker I should've clarified this more)
Is there any way to let a class extend a trait (or class) and say that any abstract-method implementation should be looked up in the object instead of the class, so that I must only implement "doSomething()" (from the trait) once (in the object)? As I said, the trait fulfills two different tasks here.
One being a BaseType so that the collection can get instances of the class. The other being a contract to ensure the doSomething()-method is there in every object.
So the Object B needs to extend the trait, because a trait is like a Java interface and every (!) Object B (or C, or D) needs to have that method. (So the only option I see -> define an interface/trait and make sure the method is there)
edit: In case anyone wonders. How I really solved the problem: I implemented two traits.
Now for one class (where I need it) I extend both and for the other I only extend one. So I actually never have to implement any method that is not absolutely necessary :)
As I wrote in the comment section, it's really unclear to me what you're asking.
However, looking at your code examples, it seems to me that trait A isn't really required.
You can use the types that already come with the Scala SDK:
object B extends (()=>Unit) {
def apply() { /* implementation */ }
}
Or, as a variant:
object B {
val aType:()=>Unit = {() => /* implementation */ }
}
In the first case, you can access the singleton instance with B, in the second case with B.aType.
In the second case, no explicit declaration of the apply method is needed.
Pick what you like.
The essential message is: You don't need a trait if you just define one simple method.
That's what Scala functions are for.
The list type might look like this:
private val aList:ListBuffer[()=>Unit] = ???
(By the way: Why not declare it as Seq[()=>Unit]? Is it important to the caller that it is a ListBuffer and not some other kind of sequence?)
Your worker might then look like this:
abstract class Worker {
def aType:()=>Unit // no need for the `get` prefix here, or the empty parameter list
def do() {aType()}
}
Note that now the Worker type has become a class that offers a method that invokes a function.
So, there is really no need to have a Worker class.
You can just take the function (aType) directly and invoke it, just so.
If you always want to call the implementation in object B, well - just do that then.
There is no need to wrap the call in instances of other types.
Your example class B just forwards the call to the B object, which is really unnecessary.
There is no need to even create an instance of B.
It does have the private member variable creator, but since it's never used, it will never be accessed in any way.
So, I would recommend to completely remove the class B.
All you need is the type ()=>Unit, which is exactly what you need: A function that takes no parameters and returns nothing.
If you get tired of writing ()=>Unit all the time, you can define a type alias, for example inside the package object.
Here is my recommentation:
type SideEffect = ()=>Unit
Then you can use SideEffect as an alias for ()=>Unit.
That's all I can make of it.
It looks to me that this is probably not what you were looking for.
But maybe this will help you a little bit along the way.
If you want to have a more concrete answer, it would be nice if you would clarify the question.
object B doesn't really have much to do with class B aside from some special rules.
If you wish to reuse that doSomething method you should just reuse the implementation from the object:
class B {
def doSomething() = B.doSomething()
}
If you want to specify object B as a specific instance of class B then you should do the following:
object B extends B("some particular creator") {
...
}
You also do not need override modifiers although they can be handy for compiler checks.
The notion of a companion object extending a trait is useful for defining behavior associated with the class itself (e.g. static methods) as opposed to instances of the class. In other words, it allows your static methods to implement interfaces. Here's an example:
import java.nio.ByteBuffer
// a trait to be implemented by the companion object of a class
// to convey the fixed size of any instance of that class
trait Sized { def size: Int }
// create a buffer based on the size information provided by the
// companion object
def createBuffer(sized: Sized): ByteBuffer = ByteBuffer.allocate(sized.size)
class MyClass(x: Long) {
def writeTo(buffer: ByteBuffer) { buffer.putLong(x) }
}
object MyClass extends Sized {
def size = java.lang.Long.SIZE / java.lang.Byte.SIZE
}
// create a buffer with correct sizing for MyClass whose companion
// object implements Sized. Note that we don't need an instance
// of MyClass to obtain sizing information.
val buf = createBuffer(MyClass)
// write an instance of MyClass to the buffer.
val c = new MyClass(42)
c.writeTo(buf)

Force inheriting class to implement methods as protected

I've a got a trait:
trait A {
def some: Int
}
and an object mixing it in:
object B extends A {
def some = 1
}
The question is, is there a way to declare some in A in a way that all inheriting objects have to declare the some method as protected for example? Something that would make the compiler yell at the above implementation of some in B?
UPDATE:
Just a clarification on the purpose of my question: Within an organization, there are some software development standards that are agreed upon. These standards, for example 'The some method is to always be declared as private when inheriting from trait A', are in general communicated via specs or documents listing all the standards or via tools such as Jenkins, etc... I am wondering if we could go even further and have these standards right in the code, which would save a lot of time correcting issues raised by Jenkins for example.
UPDATE 2:
A solution I could think of is as follows:
abstract class A(
protected val some: Int
){
protected def none: String
}
Use an abstract class instead of a trait and have the functions or values that I need to be protected by default passed in the constructor:
object B extends A(some = 1) {
def none: String = "none"
}
Note that in this case, some is by default protected unless the developer decides to expose it through another method. However, there will be no guarantee that, by default, none will be protected as well.
This works for the use case I described above. The problem with this implementation is that if we have a hierarchy of abstract classes, we would have to add the all the constructor parameters of the parent to every inheriting child in the hierarchy. For example:
abstract class A(
protected val some: Int
)
abstract class B(
someImp: Int,
protected val none: String
) extends A(some = someImp)
object C extends B(
someImp = 1,
none = "none"
)
In contrast, using traits, we could have been able to simply write:
trait A{
protected val some: Int
}
trait B extends A{
protected val none: String
}
object C extends B{
val some = 1
val none = "none"
}
I don't see any straight way to restrict subclasses from choosing a wider visibility for inherited members.
It depends on why you want to hide the field some, but if the purpose is just to forbid end-users from accessing the field, you can use a slightly modified form of the cake pattern:
trait A {
trait A0 {
protected def some: Int
}
def instance: A0
}
object B extends A {
def instance = new A0 {
def some = 5
}
}
Yeah, it looks nasty but the compiler will yell when someone tries to do:
B.instance.some
Another version of this solution is just to do things like in your example (adding protected to the member "some" in A), but to never expose directly a reference of type B (always return references of type A instead)

companion object to a private class: why isn't it valid?

i needed two instances that has access to each other privates. i naturaly thought of a companion object that grants access to a one and only instance of it's companion class. the class itself i made private, so users cannot just create instances using new.
object A {
def apply = dual
lazy val dual = new A
}
private class A {
//some irrelevant logic...
}
this code does not compile. i get: class A escapes its defining scope as part of type A error, which i don't really understand. my current workaround was to define a trait with every method declaration the class should have and make class A extend that trait, while dual is of the trait type, and not class A type.
what's the theoretic problem i'm missing here? why is this forbiden?
Paolo's solution is good (+1), but he didn't explain the error message, so let me try that. The problem stems from the fact that every method needs a return type. Your original definition of apply and dual returned an object of class A, thus the implicit return type of both was A. That implies that A must be visible to clients - how else could they call the function or access the val? Moreover, as both - and their parent object too - are public, they are globally visible. However, you declared A private which means it must not be visible outside its package. So there is a conflict which can't be resolved by the compiler.
The general rule is that all parameter and return type of functions / members must have (at least) the same scope of visibility as the referring member itself*. Thus one trivial way to solve this problem would be to reduce the visibility of apply and dual to private. This would satisfy the compiler, but not you :-)
Your solution gets around the problem by changing the static return type to a public trait, which thus has the same visibility as the members referring to it. The dynamic type of the returned object is still class A, however, this need not be visible to clients. This is a classic example of the principle "program to interfaces, not implementations".
Note that to apply this principle to the full extent, one could turn class A into a private inner class of object A, thus making it innaccessible even for other classes within the same package:
trait A {
//...
}
object A {
def apply: A = dual
lazy val dual: A = new AImpl
private class AImpl extends A {
//some irrelevant logic...
}
}
* To be pedantic, the enclosing class / object may reduce the visibility of its members, like here:
private class Holder {
def member = new Hidden
}
private class Hidden
where member is public but its enclosing class is private, effectively hiding its members from the external world. So the compiler emits no complaints here.
I think you don't want a private class, but a class with a private constructor.
class A private()
object A {
def apply = dual
lazy val dual = new A
}
Now your class is "visible" to outside code, but only your companion object can create instances of it.