Is it possible to get/search Memcached keys by a prefix? - memcached

I'm writing to memcached a lot of key/value -> PREFIX_KEY1, PREFIX_KEY2, PREFIX_KEY3
I need to get all the keys that starts with PREFIX_
Is it possible?

Sorry, but no. Memcached uses a hashing algorithm that distributes keys at apparently random places, and so those keys are scattered all over. You'd have to scan everything to find them.
Also you should be aware that, by design, memcached can drop any any key at any time for any reason. If you're putting stuff in, you should be aware that you can't depend on it coming back out. This is absolutely fine for its original use case, a cache to reduce hits on a database. But it can be a severe problem if you want to do something more complicated with it.
If these limitations are a problem, I would suggest that you use Redis instead. It behaves a lot like memcached, except that it will persist data and it lets you store complex data structures. So for your use case you can store a hash in Redis, then pull the whole hash out later.

A quick command to search if a specific key exists (the key name can be a "grep regex")
for i in {1..40}; do (echo "stats cachedump $i 0"; sleep 1; echo "quit";) | telnet localhost 11211 | grep 'APREFIX*\|ANOTHERPREFIX*'; done
i is the slab number
in the example above we search the slabs from 1 to 40
don't miss the grep part 'APREFIX*\|ANOTHERPREFIX*' ;)
based on the discussion at https://groups.google.com/forum/#!topic/memcached/YyzonP9HUi0

While #btilly is correct in saying that memcached does not do this natively, you can emulate it (quite efficiently) by maintaining an index of keys that share your prefix, allowing you to then fetch all entries that match a certain prefix.
Obviously this will only work for specific keys that you choose in advance and not arbitrary data, but it's quite workable if you can live with that limitation. There is a good article on this subject by one of the memcache developers.

You can use Namespace and perform what you need. Here is a PHP library which perform the same. You can use same Memcached for multiple Applications.
https://github.com/vijayabose/n_memcached

Related

How to find the keys being evicted from memcache?

Is there any inbuilt way/ or a hack by which I can know which key is being evicted from memcache ?
There is one solution of polling for all possible keys inserted into memcache (e.g. get multi), but that is inefficient and certainly not implementable for large number of keys.
The functionality is not needed to be run in production, but during some benchmarking and optimization runs.
Not possible AFAIK, but a really good (and simple) solution is to modify your memcached library and do a print (or whatever you want) in the delete and multidelete methods. You can then get the keys that are being deleted (both by your app and by the library itself). I hope that helps

Incrementing hundreds of counters at once, redis or mongodb?

Background/Intent:
So I'm going to create an event tracker from scratch and have a couple of ideas on how to do this but I'm unsure of the best way to proceed with the database side of things. One thing I am interested in doing is allowing these events to be completely dynamic, but at the same time to allow for reporting on relational event counters.
For example, all countries broken down by operating systems. The desired effect would be:
US # of events
iOS - # of events that occured in US
Android - # of events that occured in US
CA # of events
iOS - # of events that occured in CA
Android - # of events that occured in CA
etc.
My intent is to be able to accept these event names like so:
/?country=US&os=iOS&device=iPhone&color=blue&carrier=Sprint&city=orlando&state=FL&randomParam=123&randomParam2=456&randomParam3=789
Which means in order to do the relational counters for something like the above I would potentially be incrementing 100+ counters per request.
Assume there will be 10+ million of the above requests per day.
I want to keep things completely dynamic in terms of the event names being tracked and I also want to do it in such a manner that the lookups on the data remains super quick. As such I have been looking into using redis or mongodb for this.
Questions:
Is there a better way to do this then counters while keeping the fields dynamic?
Provided this was all in one document (structured like a tree), would using the $inc operator in mongodb to increment 100+ counters at the same time in one operation be viable and not slow? The upside here being I can retrieve all of the statistics for one 'campaign' quickly in a single query.
Would this be better suited to redis and to do a zincrby for all of the applicable counters for the event?
Thanks
Depending on how your key structure is laid out I would recommend pipelining the zincr commands. You have an easy "commit" trigger - the request. If you were to iterate over your parameters and zincr each key, then at the end of the request pass the execute command it will be very fast. I've implemented a system like you describe as both a cgi and a Django app. I set up a key structure along the lines of this:
YYYY-MM-DD:HH:MM -> sorted set
And was able to process Something like 150000-200000 increments per second on the redis side with a single process which should be plenty for your described scenario. This key structure allows me to grab data based on windows of time. I also added an expire to the keys to avoid writing a db cleanup process. I then had a cronjob that would do set operations to "roll-up" stats in to hourly, daily, and weekly using variants of the aforementioned key pattern. I bring these ideas up as they are ways you can take advantage of the built in capabilities of Redis to make the reporting side simpler. There are other ways of doing it but this pattern seems to work well.
As noted by eyossi the global lock can be a real problem with systems that do concurrent writes and reads. If you are writing this as a real time system the concurrency may well be an issue. If it is an "end if day" log parsing system then it would not likely trigger the contention unless you run multiple instances of the parser or reports at the time of input. With regards to keeping reads fast In Redis, I would consider setting up a read only redis instance slaved off of the main one. If you put it on the server running the report and point the reporting process at it it should be very quick to generate the reports.
Depending on your available memory, data set size, and whether you store any other type of data in the redis instance you might consider running a 32bit redis server to keep the memory usage down. A 32b instance should be able to keep a lot of this type of data in a small chunk of memory, but if running the normal 64 bit Redis isn't taking too much memory feel free to use it. As always test your own usage patterns to validate
In redis you could use multi to increment multiple keys at the same time.
I had some bad experience with MongoDB, i have found that it can be really tricky when you have a lot of writes to it...
you can look at this link for more info and don't forget to read the part that says "MongoDB uses 1 BFGL (big f***ing global lock)" (which maybe already improved in version 2.x - i didn't check it)
On the other hand, i had a good experience with Redis, i am using it for a lot of read / writes and it works great.
you can find more information about how i am using Redis (to get a feeling about the amount of concurrent reads / writes) here: http://engineering.picscout.com/2011/11/redis-as-messaging-framework.html
I would rather use pipelinethan multiif you don't need the atomic feature..

memcached like software with disk persistence

I have an application that runs on Ubuntu Linux 12.04 which needs to store and retrieve a large number of large serialized objects. Currently the store is implemented by simply saving the serialized streams as files, where the filenames equal the md5 hash of the serialized object. However I would like to speed things up replacing the file-store by one that does in-memory caching of objects that are recently read/written, and preferably does the hashing for me.
The design of my application should not get any more complicated. Hence preferably would be a storing back-end that manages a key-value database and caching in an abstracted and efficient way. I am a bit lost with all of the key/value stores that are out there, and much of the topics/information seems to be outdated. I was initially looking at something like memcached+membase, but maybe there are better solutions out there. I looked into redis, mongodb, couchdb, but it is not quite clear to me if they fit my needs.
My most important requirements:
Transparent saving to a persistent store in a way that the most recently written/read objects are quickly available by automatically caching them in memory.
Store should survive a reboot. Hence in memory objects should be saved on disk asap.
Currently I am calculating the md5 manually. It would actually be nicer if the back-end does this for me. Hence the ability to get the hash-key when an object is stored, and be able to retrieve the object later using the hashkey.
Big plus is that if there are packages available for Ubuntu 12.04, either in universe or through launchpad or whatever.
Other than this, the software should preferably be light not be more complicated than necessary (I don't need distributed map-reduce jobs, etc)
Thanks for any advice!
I would normally suggest Redis because it will be fast and in-memory with asynch persistant store. Plus you'll find you can use their different data types for other purposes so not as single-purpose as memcached. As far as auto-hashing, I don't think it does that as you define your own keys when you store objects (as in most of them).
One downside to Redis is if you're storing a TON of binary objects, you'll be limited to available memory in RAM (unless sharding) so could reach performance limitations. In that case you may store objects on file system, hash them, and store keys in Redis and match that to filename stored on file server and you'd be fine.
--
An alternate option would be to check out ElasticSearch which is like Mongo in that it stores objects native as JSON, but it includes the Lucene search engine on top with RESTful API interface. It "warms up" data in memory for fast response, but is also a persistent store and the nicest part is it auto-shards and auto-clusters using multicast to find other nodes.
--
Hope that helps and if so, share the love! ;-)
I'd look at MongoDB. It caches things efficiently using your OS to page data in and out, and is pretty simple to setup. Redis and Memcached won't be good solutions for you because they keep everything in RAM. Other, simpler solutions like LevelDB or BDB would also probably be suitable. I don't think any database going to compute hashes automatically for you. It sounds like you already have code for this though.

Is there a data storage where I can access data directly via array index instead of hash key? Redis? MongoDB?

I need an external C/C++ memory efficient (!) data storage for a Java app which does not have the downside of a normal database lookup (b tree) but which uses my IDs as array index. Is there an open source solution for this? I implemented this in C++ in-memory only, but I would like to have a "storage to disc" option in case of a crash or for backup. Also Java binding would be cool.
E.g. redis looks good but when reading the docs I see that in general things are accessed by hash keys which have O(1) only in theory - or can I somehow force that the hashing scheme matches the storage index? And also lists are not appropriated as they are implemented as linked lists. Or what about mongodb?
And yes, I really need that fast read access (write can be "okayish slow" :)) - it is no premature optimization but if there is no alternative I'll try redis before rolling my own. Also Java is not possible (as I said: memory efficient ;))
With a remote key-value store, the overhead is very often dominated by the network and protocol management rather than data access itself. That's why with efficient key-value stores (like Redis for instance), almost all the operations actually have the same cost.
The Redis benchmark page contains a good illustration of this point.
In other words, in the context of an in-memory remote store, and considering only the latency, a random access array will have the same exact performance than a hash table, and even less efficient O(log n) containers like red-black trees, B-trees, etc ... will be quite close.
If you really want maximum performance, I would suggest to use an embedded (i.e. in-process) store. For instance, both BerkeleyDB and Tokyo Cabinet provide disk based random access containers for fixed-length records.
KDB is the go-to solution for this problem in the financial systems (algo trading) world. Be prepared to have your brain melted by the syntax though. Oh, and it is not open source.

why memcached instead of hashmap

I am trying to understand what would be the need to go with a solution like memcached. It may seem like a silly question - but what does it bring to the table if all I need is to cache objects? Won't a simple hashmap do ?
Quoting from the memcache web site, memcache is…
Free & open source, high-performance,
distributed memory object caching
system, generic in nature, but
intended for use in speeding up
dynamic web applications by
alleviating database load.
Memcached is an in-memory key-value
store for small chunks of arbitrary
data (strings, objects) from results
of database calls, API calls, or page
rendering. Memcached is simple yet
powerful. Its simple design promotes
quick deployment, ease of development,
and solves many problems facing large
data caches. Its API is available for
most popular languages.
At heart it is a simple Key/Value
store
A key word here is distributed. In general, quoting from the memcache site again,
Memcached servers are generally
unaware of each other. There is no
crosstalk, no syncronization, no
broadcasting. The lack of
interconnections means adding more
servers will usually add more capacity
as you expect. There might be
exceptions to this rule, but they are
exceptions and carefully regarded.
I would highly recommend reading the detailed description of memcache.
Where are you going to put this hashmap? That's what it's doing for you. Any structure you implement on PHP is only there until the request ends. If you throw stuff in a persistent cache, you can fetch it back out for other requests, instead of rebuilding the data.
I know that this question is rather old, but in addition to being able to share a cache across multiple servers, there is also another aspect that is not mentioned in other answers and is the values expiration.
If you store the values in a HashMap, and that HashMap is bound to the Application context, it will keep growing in size, unless you expire items in some ways. Memcached expires object lazily for maximum performance.
When an item is added to the memcache, it can have an expiration time, for instance 600 seconds. After the object is expired it will just remain there, but if another object asks for it, it will purge it and return null.
Similarly, when memcached memory is full, it will look for the first expired item of adequate size and expire it to make room for the new item. Lastly, it can also happen that the cache is full and there isn't any item to expire, in which case it will replace the least used items.
Using a fully flagded cache system usually allow you to replicate the cache on many servers, or just scale to many server just to scale a lot of parallel requestes, all this remaining acceptable fast in term of reply.
There is an (old) article that compares different caching systems used by php:
https://www.percona.com/blog/2006/08/09/cache-performance-comparison/
Basically, file caching is faster than memcached.
So to answer the question, I believe you would have better performances using a file based cache system.
Here are the results from the tests of the article:
Cache Type Cache Gets/sec
Array Cache 365000
APC Cache 98000
File Cache 27000
Memcached Cache (TCP/IP) 12200
MySQL Query Cache (TCP/IP) 9900
MySQL Query Cache (Unix Socket) 13500
Selecting from table (TCP/IP) 5100
Selecting from table (Unix Socket) 7400