Calling functions by name at runtime - lisp

I realize that a function can be referenced using #'PRINT to reference the PRINT function. If we have a list S where the first element is 'PRINT , can we reference this using #(car S) ?
Say I'm looking at a list where the elements in the list are atoms which are the names of some functions. Currently, I can do this:
(defun aritheval (S)
(funcall
(cond
((eq '+ (car S)) #'+)
((eq '- (car S)) #'-)
((eq '* (car S)) #'*)
((eq '/ (car S)) #'/)
)
'2
'3
)
)
This function would compute 2+3, 2-3, 2*3 or 2/3 depending on the first element in list S. S contains the names of these functions.

#(car S) makes no sense. The syntax exists but means a vector with symbols CAR and S.
use
(funcall (first somelist) someargument)
or
(apply (first somelist) a-list-of-arguments)
Your function is non-Lispy formatted.
Trailing parentheses are not used in proper Lisp code. You also don't need to quote numbers. Numbers are self-evaluating, they evaluate to themselves. Also we now may prefer FIRST over CAR and REST over CDR. The functions do the same, but the names are better. Whenever we deal with simple lists, FIRST, SECOND, THIRD, ... and REST are used.
(defun aritheval (S)
(funcall (cond ((eq '+ (car S)) #'+)
((eq '- (car S)) #'-)
((eq '* (car S)) #'*)
((eq '/ (car S)) #'/))
2 3)))
Since symbols can be used as names for global functions, above is not necessary.
This function below does the same, given the mapping from symbol to function is the same.
(defun aritheval (s)
(funcall (first s) 2 3)))

Related

Arguments to APPLY in Lisp

I am having the following trouble: when trying to use APPLY function with a MAPCAR call, the lambda function passed to APPLY, which contains only one parameter, the list returned by MAPCAR, gives the following error :
*** - EVAL/APPLY: too many arguments given to :LAMBDA
The following code identifies if a heterogenous list has the last atom at any level a numerical atom.
(DEFUN hasLastNumeric (L)
(COND
((NUMBERP L) T)
((ATOM L) NIL)
((LISTP L)
(APPLY #'(LAMBDA (Lst)
(COND ((EQ (LAST Lst) T) T)
(T NIL)))
(MAPCAR 'hasLastNumeric L)))))
(WRITE (hasLastNumeric '(1 2 5)))
You don't need APPLY. Why would you use it? Remember: APPLY calls a function and uses the provided list as the list of arguments.
MAPCAR returns a list.
(let ((foo (mapcar #'1+ '(1 2 3 4))))
(cond ((eql (last foo) ...) ...)
...))
Check also what last actually returns...
If you call a function eg. (#'(lambda (a b) (+ a b)) 2 3) there is a requirement that the number of arguments fits the number of provided arguments. When using apply the requirements are the same so (apply #'(lambda (one) ...) lst) require that lst is only one element list like '(a), but it cannot be '() or '(a b). The only way to support variable number of arguments you need to use &rest arguments eg. (apply #'(lambda (&rest lst) ...) '(a b))
Looking at the logic I don't understand it. You want to return t when you have encountered a list with the last element as a number but also searched list elements on the way and returned early had you found them. It should be possible without the use of last at each step. eg.
(defun has-a-last-numeric (lst)
(labels ((helper (lst)
(loop :for (e . rest) :on lst
:if (and (null rest) (numberp e))
:do (return-from has-a-last-numeric t)
:if (listp e)
:do (helper e))))
(helper lst)))

LISP FUNCTION - Return the count of numbers of the list that are bigger of the first element

I want to solve a lisp function that returns a NUMBER(count) of numbers which are greater than the first number in the list.The list is a linear list of numbers.
(defun foo (lst)
(cond ((null lst) 0)
(car = k)
((> (car lst) k)
(1+ (foo (cdr lst))))
(T (foo (cdr lst)))))
My problem is that I cannot keep the first element and compare it with the others.
Let's take apart your problem:
You have a set of numbers. Really, you have a “special” first number, and then the rest of them. Specifically, you probably want only real numbers, because “less than” does not make sense in terms of complex (imaginary) numbers.
You can use first to get the first number from the list, and rest for the others.
Of these, you want to count any that are not greater than the first.
So let's start with sort of pseudocode
(defun count-numbers-greater-than-first (list)
;; split out first and rest
;; call the real count function
)
Well, we know now that we can use first and rest (also, as you used, historically car and cdr), so:
(defun count-numbers-greater-than-first (list)
(count-numbers-greater-than (first list) (rest list))
You already probably know that > is used to test whether real numbers are greater than one another.
A quick look at the CLHS reveals a nice function called count-if
(defun count-numbers-not-greater-than (reference other-numbers)
(count-if ??? other-numbers))
The ??? needs to be an object of function type, or the name of a function. We need to “curry” the reference (first number) into that function. This means we want to create a new function, that is only used for one run through the count-if, that already has “closed over” the value of reference.
If we knew that number would always be, say, 100, that function would look like this:
(defun greater-than-100 (number)
(> number 100))
That function could then get used in the count-if:
(defun count-numbers-greater-than (reference other-numbers)
(count-if (function greater-than-100)
other-numbers))
(defun count-numbers-greater-than (reference other-numbers)
(count-if #'greater-than-100 other-numbers))
But that doesn't solve the problem of getting the reference number “curried” into the function.
Without reaching for Alexandria (I'll explain in a moment), you can use a lambda form to create a new, anonymous function right here. Since reference is available within count-numbers-not-greater-than, you can use its value within that lambda. Let's convert for 100 first:
(defun count-numbers-greater-than (reference other-numbers)
(count-if (lambda (number) (> number 100))
other-numbers))
Now we can use reference:
(defun count-numbers-greater-than (reference other-numbers)
(count-if (lambda (number) (> number reference))
other-numbers))
And, in fact, you could even merge this back into the other function, if you wanted:
(defun count-numbers-greater-than-first (list)
(count-if (lambda (number) (> number (first list)))
(rest list)))
That Alexandria thing
But, what about Alexandria? Alexandria is a collection of super-useful utility functions that's available in Quicklisp or elsewhere.
(ql:quickload "alexandria")
(use-package #:alexandria)
Of course, you'd normally use it in your own defpackage
(defpackage my-cool-program
(:use :common-lisp :alexandria))
Two of the things it provides are curry and rcurry functions. It turns out, that lambda function in there is a really common case. You have an existing function — here, > — that you want to call with the same value over and over, and also some unknown value that you want to pass in each time.
These end up looking a lot like this:
(lambda (x) (foo known x))
You can use curry to write the same thing more concisely:
(curry #'foo known)
It also work with any number of arguments. RCurry does the same, but it puts the unknown values “x” at the left, and your known values at the right.
(lambda (x) (foo x known)) = (rcurry #'foo known)
So another way to write the count-if is:
(defun count-numbers-greater-than-first (list)
(count-if (rcurry #'> (first list))
(rest list)))
* (count-numbers-greater-than-first '(10 9 8 7 11 12))
2
Your function indented correctly looks like this:
(defun foo (lst)
(cond ((null lst) 0)
(car = k) ; strange cond term
((> (car lst) k)
(1+ (foo (cdr lst))))
(T (foo (cdr lst)))))
I have commented the second term in your cond. It is quite strange. It first evaluates the variable car (not the function #'car). If car is not nil it first evaluates the variable = (not the function #'=) and since it is not the last consequent expression in the cond term it throws that away and returns the last which is k.
Secondly you write that you say you use the first element as comparison, however you call it k in your function but it is not defined anywhere. You need to do something before you do the recursion and thus you cannot let the actual function do the recursion since it will take the first element each time. Here is where labels can be used:
;; didn't call it foo since it's not very descriptive
(defun count-larger-than-first (list)
(let ((first (car list)))
(labels ((helper (list)
(cond ((null list) 0)
((> (car list) first)
(1+ (helper (cdr list))))
(t (helper (cdr list))))))
(helper (cdr list)))))
Of course. Since you now have the possibility to add more arguments I would have added an accumulator:
(defun count-larger-than-first (list)
(let ((first (car list)))
(labels ((helper (list acc)
(cond ((null list) acc)
((> (car list) first)
(helper (cdr list) (1+ acc)))
(t (helper (cdr list) acc)))))
(helper (cdr list) 0))))
And of course recursion might blow the stack so you should really write it without in Common Lisp:
(defun count-larger-than-first (list)
(let ((first (car list)))
(loop :for element :in (cdr list)
:counting (> element first))))
There are higher order functions that count too which might be more suitable:
(defun count-larger-than-first (list)
(let ((first (car list)))
(count-if (lambda (element) (> element first))
(cdr list))))

Checking circularity in lisp - same variable through recursive function

I'm trying to create a function that would test whether the given list is circular with a re-starting point being the beginning of the list.
Expected results:
(setq liste '(a b c))
(rplacd (cddr liste) liste)
(circular liste) => t
(circular '(a b c a b c)) => nil
As I simply want to test if any subsequent item is 'eq' to the first one, I don't want to build the whole tortoise and hare algorithm.
Here is my code :
(defun circular (liste)
(let (beginningliste (car liste)))
(labels ( (circ2 (liste)
(cond
((atom liste) nil)
((eq (car liste) beginningliste) t)
(t (circ2 (cdr liste)))
) ) ) ) )
It doesn't give the expected result but I don't understand where my error is
I'm not sure I'm using 'labels' correctly
Is there a way to do that without using 'labels'?
Edit. I guess I have answered my third question as I think I have found a simpler way. Would this work?
(defun circular (liste)
(cond
((atom liste) nil)
((eq (car liste) (cadr liste)) t)
(t (circular (rplacd liste (cddr liste))))
)
)
First, the behavior is undefined when you mutate constant data: when you quote something (here the list), the Lisp environment has the right to treat it as a constant. See also this question for why defparameter or defvar is preferred over setq. And so...
(setq list '(a b c))
(rplacd (cddr list) list)
... would be better written as:
(defparameter *list* (copy-list '(a b c)))
(setf (cdr (last *list*)) *list*)
Second, your code is badly formatted and has bad naming conventions (please use dashes to separate words); here it is with a conventional layout, with the help of emacs:
(defun circularp (list)
(let (first (car list)))
(labels ((circ2 (list)
(cond
((atom list) nil)
((eq (car list) first) t)
(t (circ2 (cdr list))))))))
With that formatting, two things should be apparent:
The let contains no body forms: you define local variables and never use them; you could as well delete the let line.
Furthermore, the let is missing one pair of parenthesis: what you wrote defines a variable name first and another one named car, bound to list. I presume you want to define first as (car list).
You define a local circ2 function but never use it. I would expect the circularp function (the -p is for "predicate", like numberp, stringp) to call (circ2 (cdr list)). I prefer renaming circ2 as visit (or recurse), because it means something.
With the above corrections, that would be:
(defun circularp (list)
(let ((first (car list)))
(labels ((visit (list)
(cond
((atom list) nil)
((eq (car list) first) t)
(t (visit (cdr list))))))
(visit (cdr list)))))
However, if your list is not circular but contains the same element multiple times (like '(a a b)), you will report it as circular, because you inspect the data it holds instead of the structure only. Don't look into the CAR here:
(defun circularp (list)
(let ((first list))
(labels ((visit (list)
(cond
((atom list) nil)
((eq list first) t)
(t (visit (cdr list))))))
(visit (cdr list)))))
Also, the inner function is tail recursive but there is no guarantee that a Common Lisp implementation automatically eliminates tail calls (you should check with your implementation; most can do it on request). That means you risk allocating as many call stack frames as you have elements in the list, which is bad. Better use a loop directly:
(defun circularp (list)
(loop
for cursor on (cdr list)
while (consp cursor)
thereis (eq cursor list)))
Last, but not least: your approach is a very common one but fails when the list is not one big circular chain of cells, but merely contains a loop somewhere. Consider for example:
CL-USER> *list*
#1=(A B C . #1#)
CL-USER> (push 10 *list*)
(10 . #1=(A B C . #1#))
CL-USER> (push 20 *list*)
(20 10 . #1=(A B C . #1#))
(see that answer where I explain what #1= and #1# mean)
The lists with numbers in front exhibit circularity but you can't just use the first cons cell as a marker, because you will be looping forever inside the sublist that is circular. This is the kind or problems the Tortoise and Hare algorithm solves (there might be other techniques, the most common being storing visited elements in a hash table).
After your last edit, here is what I would do if I wanted to check for circularity, in a recursive fashion, without labels:
(defun circularp (list &optional seen)
(and (consp list)
(or (if (member list seen) t nil)
(circularp (cdr list) (cons list seen)))))
We keep track of all the visited cons cells in seen, which is optional and initialized to NIL (you could pass another value, but that can be seen as a feature).
Then, we say that a list is circular with respect to seen if it is a cons cell which either: (i) already exists in seen, or (ii) is such that its CDR is circular with respect to (cons list seen).
The only additional trick here is to ensure the result is a boolean, and not the return value of member (which is the sublist where the element being searched for is the first element): if your environment has *PRINT-CIRCLE* set to NIL and the list is actually circular, you don't want it to try printing the result.
Instead of (if (member list seen) t nil), you could also use:
(when (member list seen))
(position list seen)
and of course (not (not (member list seen)))

Not numeric atoms LISP

I want to ask why this function doesn't work...
(defun nenum(ls)
(cond
((null ls) nil)
((listp car(ls)) (nenum (rest ls)))
((numberp car(ls)) (nenum (rest ls)))
(t (cons (car ls) (nenum (rest ls))))))
Example: (nenum '(l 1 i (b) (5) s -2 p)) --> (l i s p)
Thank you!
Looking at the predicate you have in one of your cond terms:
(listp car (ls))
Thus apply the function listp with the two arguments car and the result of calling the function ls with no arguments. car and ls both need to be free variables and listp needs to be a different function than the one defined in CLHS since it only takes one argument.
Perhaps you have though you were writing Algol? An Algol function call look like operator(operand) but not CL. CL is a LISP dialect and we have this form on our function calls:
(operand operator)
If we nest we do the same:
(operand (operand operator))
You got it right in the alternative (cons (car ls) (nenum (rest ls)))
Replace car(ls) with (car ls).
Here's a much easier way to write that function:
(defun nenum (list)
(remove-if (lambda (item)
(or (listp item)
(numberp item)))
list))
Note that NIL doesn't need its own test because listp covers it.
There's no need to write a function like this from scratch. Common Lisp already provides remove-if, and you can give it a predicate that matches numbers and non-atoms:
CL-USER> (remove-if #'(lambda (x)
(or (numberp x)
(not (atom x))))
'(l 1 i (b) (5) s -2 p))
;=> (L I S P)
Or, to make it even clearer that you're keeping non-numeric atoms, you can use remove-if-not with a predicate that checks for numeric atoms:
CL-USER> (remove-if-not #'(lambda (x)
(and (atom x)
(not (numberp x))))
'(l 1 i (b) (5) s -2 p))
;=> (L I S P)
Note that the empty list, which is often written as (), is just the symbol nil. As such, it too is a non-numeric atom. If you'd want to keep other symbols, e.g.,
CL-USER> (remove-if-not #'(lambda (x)
(and (atom x)
(not (numberp x))))
'(li (b) -1 (5) sp))
;=> (LI SP)
then you'll probably want to keep nil as well:
CL-USER> (remove-if-not #'(lambda (x)
(and (atom x)
(not (numberp x))))
'(van (b) () (5) a))
;=> (VAN NIL A)

How to remove nested parentheses in LISP

How can I remove nested parentheses recursively in Common LISP Such as
(unnest '(a b c (d e) ((f) g))) => (a b c d e f g)
(unnest '(a b)) => (a b)
(unnest '(() ((((a)))) ())) => (a)
Thanks
Here's what I'd do:
(ql:quickload "alexandria")
(alexandria:flatten list)
That works mainly because I have Quicklisp installed already.
(defun flatten (l)
(cond ((null l) nil)
((atom l) (list l))
(t (loop for a in l appending (flatten a)))))
I realize this is an old thread, but it is one of the first that comes up when I google lisp flatten. The solution I discovered is similar to those discussed above, but the formatting is slightly different. I will explain it as if you are new to lisp, as I was when I first googled this question, so it's likely that others will be too.
(defun flatten (L)
"Converts a list to single level."
(if (null L)
nil
(if (atom (first L))
(cons (first L) (flatten (rest L)))
(append (flatten (first L)) (flatten (rest L))))))
For those new to lisp, this is a brief summary.
The following line declares a function called flatten with argument L.
(defun flatten (L)
The line below checks for an empty list.
(if (null L)
The next line returns nil because cons ATOM nil declares a list with one entry (ATOM). This is the base case of the recursion and lets the function know when to stop. The line after this checks to see if the first item in the list is an atom instead of another list.
(if (atom (first L))
Then, if it is, it uses recursion to create a flattened list of this atom combined with the rest of the flattened list that the function will generate. cons combines an atom with another list.
(cons (first L) (flatten (rest L)))
If it's not an atom, then we have to flatten on it, because it is another list that may have further lists inside of it.
(append (flatten (first L)) (flatten (rest L))))))
The append function will append the first list to the start of the second list.
Also note that every time you use a function in lisp, you have to surround it with parenthesis. This confused me at first.
You could define it like this for example:
(defun unnest (x)
(labels ((rec (x acc)
(cond ((null x) acc)
((atom x) (cons x acc))
(t (rec (car x) (rec (cdr x) acc))))))
(rec x nil)))
(defun flatten (l)
(cond ((null l) nil)
((atom (car l)) (cons (car l) (flatten (cdr l))))
(t (append (flatten (car l)) (flatten (cdr l))))))
Lisp has the function remove to remove things. Here I use a version REMOVE-IF that removes every item for which a predicate is true. I test if the thing is a parenthesis and remove it if true.
If you want to remove parentheses, see this function:
(defun unnest (thing)
(read-from-string
(concatenate
'string
"("
(remove-if (lambda (c)
(member c '(#\( #\))))
(princ-to-string thing))
")")))
Note, though, as Svante mentions, one does not usually 'remove' parentheses.
Most of the answers have already mentioned a recursive solution to the Flatten problem. Using Common Lisp Object System's multiple dispatching you could solve the problem recursively by defining 3 methods for 3 possible scenarios:
(defmethod flatten ((tree null))
"Tree is empty list."
())
(defmethod flatten ((tree list))
"Tree is a list."
(append (flatten (car tree))
(flatten (cdr tree))))
(defmethod flatten (tree)
"Tree is something else (atom?)."
(list tree))
(flatten '(2 ((8) 2 (9 (d (s (((((a))))))))))) ; => (2 8 2 9 D S A)
Just leaving this here as I visited this question with the need of only flattening one level and later figure out for myself that (apply 'concatenate 'list ((1 2) (3 4) (5 6 7))) is a cleaner solution in that case.
This is a accumulator based approach. The local function %flatten keeps an accumulator of the tail (the right part of the list that's already been flattened). When the part remaining to be flattened (the left part of the list) is empty, it returns the tail. When the part to be flattened is a non-list, it returns that part prefixed onto the tail. When the part to be flattened is a list, it flattens the rest of the list (with the current tail), then uses that result as the tail for flattening the first part of the list.
(defun flatten (list)
(labels ((%flatten (list tail)
(cond
((null list) tail)
((atom list) (list* list tail))
(t (%flatten (first list)
(%flatten (rest list)
tail))))))
(%flatten list '())))
CL-USER> (flatten '((1 2) (3 4) ((5) 6) 7))
(1 2 3 4 5 6 7)
I know this question is really old but I noticed that nobody used the push/nreverse idiom, so I am uploading that here.
the function reverse-atomize takes out each "atom" and puts it into the output of the next call. At the end it produces a flattened list that is backwards, which is resolved with the nreverse function in the atomize function.
(defun reverse-atomize (tree output)
"Auxillary function for atomize"
(if (null tree)
output
(if (atom (car tree))
(reverse-atomize (cdr tree) (push (car tree) output))
(reverse-atomize (cdr tree) (nconc (reverse-atomize (car tree)
nil)
output)))))
(defun atomize (tree)
"Flattens a list into only the atoms in it"
(nreverse (reverse-atomize tree nil)))
So calling atomize '((a b) (c) d) looks like this:
(A B C D)
And if you were to call reverse-atomize with reverse-atomize '((a b) (c) d) this would occur:
(D C B A)
People like using functions like push, nreverse, and nconc because they use less RAM than their respective cons, reverse, and append functions. That being said the double recursive nature of reverse-atomize does come with it's own RAMifications.
This popular question only has recursive solutions (not counting Rainer's answer).
Let's have a loop version:
(defun flatten (tree &aux todo flat)
(check-type tree list)
(loop
(shiftf todo tree nil)
(unless todo (return flat))
(dolist (elt todo)
(if (listp elt)
(dolist (e elt)
(push e tree))
(push elt flat))))))
(defun unnest (somewhat)
(cond
((null somewhat) nil)
((atom somewhat) (list somewhat))
(t
(append (unnest (car somewhat)) (unnest (cdr somewhat))))))
I couldn't resist adding my two cents. While the CL spec does not require tail call optimization (TCO), many (most?) implementations have that feature.
So here's a tail recursive version that collects the leaf nodes of a tree into a flat list (which is one version of "removing parentheses"):
(defun flatten (tree &key (include-nil t))
(check-type tree list)
(labels ((%flatten (lst accum)
(if (null lst)
(nreverse accum)
(let ((elem (first lst)))
(if (atom elem)
(%flatten (cdr lst) (if (or elem include-nil)
(cons elem accum)
accum))
(%flatten (append elem (cdr lst)) accum))))))
(%flatten tree nil)))
It preserves null leaf nodes by default, with the option to remove them. It also preserves the left-to-right order of the tree's leaf nodes.
Note from Google lisp style guide about TCO:
You should favor iteration over recursion.
...most serious implementations (including SBCL and CCL) do implement proper tail calls, but with restrictions:
The (DECLARE (OPTIMIZE ...)) settings must favor SPEED enough and not favor DEBUG too much, for some compiler-dependent meanings of "enough" and "too much".
And this from SBCL docs:
... disabling tail-recursion optimization ... happens when the debug optimization quality is greater than 2.