how to eliminate complex number in a vector in Matlab - matlab

In Matlab, suppose there is a vector whose elements can be complex or real. I was wondering how to remove the nonreal elements, and consequently reduce the size of the vector? Thanks and regards!

Use the REAL and IMAG functions:
>> x = [1+i; 4+3i; 5+6i]
x =
1 + 1i
4 + 3i
5 + 6i
>> real(x)
ans =
1
4
5
>> imag(x)
ans =
1
3
6
EDIT
The above doesn't answer the poster's question. This does.
Use the FIND and REAL functions:
>> v = [1+i; 2; 3]
v =
1 + 1i
2
3
>> v(v == real(v))
ans =
2
3

You can also avoid testing in a loop using Matlab's vector syntax:
x = [1, 2, 3+1i, 4+2i, 5+3i, 6, 7, 8+4i, 9+0.000001i]
y = x(imag(x) == 0);
z = real(x(abs(imag(x)) < 0.00001));
y should be [1,2,6,7] and z should be [1,2,6,7,9]
imag(x) == 0 yields a logical vector with true values whenever the equality condition holds. x(<logical vector>) yields a new vector with only the elements of x where <logical vector> was true.

That's a very unusual thing to ask. Since the imaginary part is a floating point number, you can't really tell which number is a real number and which number is very close to a real number. Such function doesn't exist in Matlab since it's not very clear how it would be useful for anything (it doesn't make much sense to remove those numbers). Specifying your actual purpose here might help you get better answers.
If you want to ensure that only real numbers are left in the vector, you can use the following (it doesn't work with matrices and vertical rows, but you've got the idea):
x = [1, 2, 3+1i, 4+2i, 5+3i, 6, 7, 8+4i, 9+0i]
z = []
for k = [1:length(x)]
if imag(x(k)) == 0
z = [z, real(x(k))]
endif
endfor
If you want to keep all numbers that are close to a real number, but could have some small non-zero imaginary part, you can use the following:
x = [1, 2, 3+1i, 4+2i, 5+3i, 6, 7, 8+4i, 9+0.000001i]
z = []
for k = [1:length(x)]
if abs(imag(x(k))) < 0.00001
z = [z, real(x(k))]
endif
endfor
Of course, if you tell us what your actual criterion is, it would be much easier to give you a better idea. Are you looking for the real solutions to some sort of equation or system of equations, real roots of a polynomial? In this case, the first one might miss a real solution because of the approximation error, and the second one can give you things that aren't solutions.

Related

Matlab: Vectorizing 4 nested for loops

So, I need to vectorize some for loops into a single line. I understand how vectorize one and two for-loops, but am really struggling to do more than that. Essentially, I am computing a "blur" matrix M2 of size (n-2)x(m-2) of an original matrix M of size nxm, where s = size(M):
for x = 0:1
for y = 0:1
m = zeros(1, 9);
k = 1;
for i = 1:(s(1) - 1)
for j = 1:(s(2) - 1)
m(1, k) = M(i+x,j+y);
k = k+1;
end
end
M2(x+1,y+1) = mean(m);
end
end
This is the closest I've gotten:
for x=0:1
for y=0:1
M2(x+1, y+1) = mean(mean(M((x+1):(3+x),(y+1):(3+y))))
end
end
To get any closer to a one-line solution, it seems like there has to be some kind of "communication" where I assign two variables (x,y) to index over M2 and index over M; I just don't see how it can be done otherwise, but I am assured there is a solution.
Is there a reason why you are not using MATLAB's convolution function to help you do this? You are performing a blur with a 3 x 3 averaging kernel with overlapping neighbourhoods. This is exactly what convolution is doing. You can perform this using conv2:
M2 = conv2(M, ones(3) / 9, 'valid');
The 'valid' flag ensures that you return a size(M) - 2 matrix in both dimensions as you have requested.
In your code, you have hardcoded this for a 4 x 4 matrix. To double-check to see if we have the right results, let's generate a random 4 x 4 matrix:
rng(123);
M = rand(4, 4);
s = size(M);
If we run this with your code, we get:
>> M2
M2 =
0.5054 0.4707
0.5130 0.5276
Doing this with conv2:
>> M2 = conv2(M, ones(3) / 9, 'valid')
M2 =
0.5054 0.4707
0.5130 0.5276
However, if you want to do this from first principles, the overlapping of the pixel neighbourhoods is very difficult to escape using loops. The two for loop approach you have is good enough and it tackles the problem appropriately. I would make the size of the input instead of being hard coded. Therefore, write a function that does something like this:
function M2 = blur_fp(M)
s = size(M);
M2 = zeros(s(1) - 2, s(2) - 2);
for ii = 2 : s(1) - 1
for jj = 2 : s(2) - 1
p = M(ii - 1 : ii + 1, jj - 1 : jj + 1);
M2(ii - 1, jj - 1) = mean(p(:));
end
end
The first line of code defines the function, which we will call blur_fp. The next couple lines of code determine the size of the input matrix as well as initialising a blank matrix to store out output. We then loop through each pixel location in the matrix that is possible without the kernel going outside of the boundaries of the image, we grab a 3 x 3 neighbourhood with each pixel location serving as the centre, we then unroll the matrix into a single column vector, find the average and store it in the appropriate output. For small kernels and relatively large matrices, this should perform OK.
To take this a little further, you can use user Divakar's im2col_sliding function which takes overlapping neighbourhoods and unrolls them into columns. Therefore, each column represents a neighbourhood which you can then blur the input using vector-matrix multiplication. You would then use reshape to reshape the result back into a matrix:
T = im2col_sliding(M, [3 3]);
V = ones(1, 9) / 9;
s = size(M);
M2 = reshape(V * T, s(1) - 2, s(2) - 2);
This unfortunately cannot be done in a single line unless you use built-in functions. I'm not sure what your intention is, but hopefully the gamut of approaches you have seen here have given you some insight on how to do this efficiently. BTW, using loops for small matrices (i.e. 4 x 4) may be better in efficiency. You will start to notice performance changes when you increase the size of the input... then again, I would argue that using loops are competitive as of R2015b when the JIT has significantly improved.

Matlab integral over function of symbolic matrix

In an attempt to speed up for loops (or eliminate all together), I've been trying to pass matrices into functions. I have to use sine and cosine as well. However, when I attempt to find the integral of a matrix where the elements are composed of sines and cosines, it doesn't work and I can't seem to find a way to make it do so.
I have a matrix SI that is composed of sines and cosines with respect to a variable that I have defined using the Symbolic Math Toolbox. As such, it would actually be even better if I could just pass the SI matrix and receive a matrix of values that is the integral of the sine/cosine function at every location in this matrix. I would essentially get a square matrix back. I am not sure if I phrased that very well, but I have the following code below that I have started with.
I = [1 2; 3 4];
J = [5 6; 7 8];
syms o;
j = o*J;
SI = sin(I + j);
%SI(1,1) = sin(5*o + 1)
integral(#(o) o.*SI(1,1), 0,1);
Ideally, I would want to solve integral(#(o) o*SI,0,1) and get a matrix of values. What should I do here?
Given that A, B and C are all N x N matrices, for the moment, let's assume they're all 2 x 2 matrices to make the example I'm illustrating more succinct to understand. Let's also define o as a mathematical symbol based on your comments in your question above.
syms o;
A = [1 2; 3 4];
B = [5 6; 7 8];
C = [9 10; 11 12];
Let's also define your function f according to your comments:
f = o*sin(A + o*B + C)
We thus get:
f =
[ o*sin(5*o + 10), o*sin(6*o + 12)]
[ o*sin(7*o + 14), o*sin(8*o + 16)]
Remember, for each element in f, we take the corresponding elements in A, B and C and add them together. As such, for the first row and first column of each matrix, we have 1, 5 and 9. As such, A + o*B + C for the first row, first column equates to: 1 + 5*o + 9 = 5*o + 10.
Now if you want to integrate, just use the int command. This will find the exact integral, provided that the integral can be solvable in closed form. int also can handle matrices so it will integrate each element in the matrix. You can call it like so:
out = int(f,a,b);
This will integrate f for each element from the lower bound a to the upper bound b. As such, supposing our limits were from 0 to 1 as you said. Therefore:
out = int(f,0,1);
We thus get:
out =
[ sin(15)/25 - sin(10)/25 - cos(15)/5, sin(18)/36 - sin(12)/36 - cos(18)/6]
[ sin(21)/49 - sin(14)/49 - cos(21)/7, sin(24)/64 - sin(16)/64 - cos(24)/8]
Bear in mind that out is defined in the symbolic math toolbox. If you want the actual numerical values, you need to cast the answer to double. Therefore:
finalOut = double(out);
We thus get:
finalOut =
0.1997 -0.1160
0.0751 -0.0627
Obviously, this can generalize for any size M x N matrices, so long as they all share the same dimensions.
Caveat
sin, cos, tan and the other related functions have their units in radians. If you wish for the degrees equivalent, append a d at the end of the function (i.e. sind, cosd, tand, etc.)
I believe this is the answer you're after. Good luck!

Indexing into vector

Can someone please explain why in example A the result is 1x6 vector (which makes sense and was what I was expecting) whereas in example B the result is 1x4 vector?
In example B if I predefine the size of newvec to be a 1x6 vector then the result is the correct 1x6 vector. Just not understanding what is going on.
Example A
vec = [0 2 3 0 5 0] %1x6
newvec(vec == 0) = 1 %produces a 1 x 6 vector
Example B
vec = [0 2 3 0 5 3] %1 x 6
newvec(vec == 0) = 1 %produces a 1 x 4 vector
If newvec doesn't exist when you call the second line, MATLAB only makes it as large as it needs to hold the indexes you're setting to 1.
What you're actually doing is:
newvec([1 4 6]) = 1; or
newvec([1 4]) = 1;
Similarly if vec was actually a 2D/3D etc. matrix, newvec will come out as 1 x N, where N is whatever the highest index number is, and not retain the shape of the original matrix.
So, in these cases you need to either:
1) preallocate newvec to be the size of vec first.
2) Do newvec = (vec==0) instead
Why, we will never know. It's a design choice by The MathWorks, and IMHO, it indeed violates the principle of least surprise.
It smells a bit of premature optimization (in terms of RAM usage) and/or that MATLAB's internals do a call to find before the assignment, or something similar. But it's anyone's guess, really.
A more common way to do what you want, is this:
newvec = (vec == 0);
EDIT:
Thanks to Dan for pointing out the error.
vec == 0 produces a logical matrix. Now if size of newvec is not defined then newvec(vec==0) =1 will always create a new row vector newvec.
The following steps will decide the size of this newvec
temp1 = logical_matrix(:);
trailing_zeros = number of zeros after the occurrence of last `true` value in temp1
size(newvec) = [1, numel(logical_matrix) - trailing_zeros] ;
When you predefine the size of newvec then newvec(v==0) = 1 cannot change the size of newvec , it only assigns 1 to the corresponding indices for which vec==0 is true.

Stability (Numerical analysis)

I'm trying to find the max machine number x that satisfies the following equation: x+a=a, where a is a given integer. (I'm not allowed to use eps.)
Here's my code (which is not really working):
function [] = Largest_x()
a=2184;
x=0.0000000001
while (x+a)~=a
x=2*x;
end
fprintf('The biggest value of x in order that x+a=a \n (where a is equal to %g) is : %g \n',a,x);
end
Any help would be much appreciated.
The answer is eps(a)/2.
eps is the difference to the next floating point number, so if you add half or less than that to a float, it won't change. For example:
100+eps(100)/2==100
ans =
1
%# divide by less than two
100+eps(100)/1.9==100
ans =
0
%# what is that number x?
eps(100)/2
ans =
7.1054e-15
If you don't want to rely on eps, you can calculate the number as
2^(-53+floor(log2(a)))
You're small algorithm is certainly not correct. The only conditions where A = X + A are when X is equal to 0. By default matlab data types are doubles with 64 bits.
Lets pretend that matlab were instead using 8 bit integers. The only way to satisfy the equation A = X + A is for X to have the binary representation of [0 0 0 0 0 0 0 0]. So any number between 1 and 0 would work as decimal points are truncated from integers. So again if you were using integers A = A + X would resolve to true if you were to set the value of X to any value between [0,1). However this value is meaningless because X would not take on this value but rather it would take on the value of 0.
It sounds like you are trying to find the resolution of matlab data types. See this: http://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
The correct answer is that, provided by Jonas: 0.5 * eps(a)
Here is an alternative for the empirical and approximate solution:
>> a = 2184;
>> e = 2 .^ (-100 : 100); % logarithmic scale
>> idx = find(a + e == a, 1, 'last')
idx =
59
>> e(idx)
ans =
2.2737e-013

Creating and manipulating three dimensional matrices in Matlab

I'm desperately trying to avoid a for loop in Matlab, but I cannot figure out how to do it. Here's the situation:
I have two m x n matrices A and B and two vectors v and w of length d. I want to outer multiply A and v so that I get an m x n x d matrix where the (i,j,k) entry is A_(i,j) * v_k, and similarly for B and w.
Afterward, I want to add the resulting m x n x d matrices, and then take the mean along the last dimension to get back an m x n matrix.
I'm pretty sure I could handle the latter part, but the first part has me completely stuck. I tried using bsxfun to no avail. Anyone know an efficient way to do this? Thanks very much!
EDIT: This revision comes after the three great answers below. gnovice has the best answer to the question I asked without a doubt. However,the question that I meant to ask involves squaring each entry before taking the mean. I forgot to mention this part originally. Given this annoyance, both of the other answers work well, but the clever trick of doing algebra before coding doesn't help this time. Thanks for the help, everyone!
EDIT:
Even though the problem in the question has been updated, an algebraic approach can still be used to simplify matters. You still don't have to bother with 3-D matrices. Your result is just going to be this:
output = mean(v.^2).*A.^2 + 2.*mean(v.*w).*A.*B + mean(w.^2).*B.^2;
If your matrices and vectors are large, this solution will give you much better performance due to the reduced amount of memory required as compared to solutions using BSXFUN or REPMAT.
Explanation:
Assuming M is the m-by-n-by-d matrix that you get as a result before taking the mean along the third dimension, this is what a span along the third dimension will contain:
M(i,j,:) = A(i,j).*v + B(i,j).*w;
In other words, the vector v scaled by A(i,j) plus the vector w scaled by B(i,j). And this is what you get when you apply an element-wise squaring:
M(i,j,:).^2 = (A(i,j).*v + B(i,j).*w).^2;
= (A(i,j).*v).^2 + ...
2.*A(i,j).*B(i,j).*v.*w + ...
(B(i,j).*w).^2;
Now, when you take the mean across the third dimension, the result for each element output(i,j) will be the following:
output(i,j) = mean(M(i,j,:).^2);
= mean((A(i,j).*v).^2 + ...
2.*A(i,j).*B(i,j).*v.*w + ...
(B(i,j).*w).^2);
= sum((A(i,j).*v).^2 + ...
2.*A(i,j).*B(i,j).*v.*w + ...
(B(i,j).*w).^2)/d;
= sum((A(i,j).*v).^2)/d + ...
sum(2.*A(i,j).*B(i,j).*v.*w)/d + ...
sum((B(i,j).*w).^2)/d;
= A(i,j).^2.*mean(v.^2) + ...
2.*A(i,j).*B(i,j).*mean(v.*w) + ...
B(i,j).^2.*mean(w.^2);
Try reshaping the vectors v and w to be 1 x 1 x d:
mean (bsxfun(#times, A, reshape(v, 1, 1, [])) ...
+ bsxfun(#times, B, reshape(w, 1, 1, [])), 3)
Here I am using [] in the argument to reshape to tell it to fill that dimension in based on the product of all the other dimensions and the total number of elements in the vector.
Use repmat to tile the matrix in the third dimension.
A =
1 2 3
4 5 6
>> repmat(A, [1 1 10])
ans(:,:,1) =
1 2 3
4 5 6
ans(:,:,2) =
1 2 3
4 5 6
etc.
You still don't have to resort to any explicit loops or indirect looping using bsxfun et al. for your updated requirements. You can achieve what you want by a simple vectorized solution as follows
output = reshape(mean((v(:)*A(:)'+w(:)*B(:)').^2),size(A));
Since OP only says that v and w are vectors of length d, the above solution should work for both row and column vectors. If they are known to be column vectors, v(:) can be replaced by v and likewise for w.
You can check if this matches Lambdageek's answer (modified to square the terms) as follows
outputLG = mean ((bsxfun(#times, A, reshape(v, 1, 1, [])) ...
+ bsxfun(#times, B, reshape(w, 1, 1, []))).^2, 3);
isequal(output,outputLG)
ans =
1