Type aliasing Java classes with statics - scala

Suppose MyClass is a class defined in Java, and has many static as well as non-static members. I tried to alias this class (and associated companion object) in a Scala object MyObject as shown below:
object MyObject {
import javastuff._
type MyAlias = MyClass
val MyAlias = MyClass
}
Scalac complains:
error: object MyClass is not a value
val MyAlias = MyClass
How do I work around this? Thanks.

Although this works in pure Scala for a class + companion object, it's not possible with Java's static methods, as these don't belong to any interface.
Scala could, in theory, create an object containing delegates to all the static methods of some class, but it doesn't do this currently. It's also possible to write a compiler plugin for this if you feel comfortable writing plugins.
Failing that, you'll either have to create an object full of delegates yourself, or just cherry-pick a few methods and pass them around as functions.

it's not possible with Java's static methods, as these don't belong to any interface.
Update 5 years later: PR 5131 mentions:
We used to disable generation of static forwarders when a object had a
trait as a companion, as one could not add methods with bodies to an
interface in JVM 6.
The JVM lifted this restriction to support default methods in interfaces,
so we can lift the restriction on static forwarders, too.
Fixes scala-dev issue 59
See commit 41c9a17 by Jason Zaugg (retronym).

Related

Usage of clone method in Chisel IO interface constructors

Several IO interface constructors of the Sodor processor collection implements its own clone method. I looked into the usage of clone method in Scala but still cannot figure out why exactly that is done. (I could not find any explicit usage of these methods anywhere in the design)
Sodor is still currently still on Chisel 2. clone was renamed to cloneType in Chisel 3 to distinguish it from clone in Java and Scala. cloneType is generally required by Chisel in order to instantiate new instances of parameterized Bundles. For example:
class MyBundle extends Bundle {
val foo = UInt(32.W)
}
class MyParameterizedBundle(width: Int) extends Bundle {
val bar = UInt(width.W)
}
Chisel often needs to create an instance of a given Bundle class from another instance of that class. Chisel uses Java reflection to do this. If there are no arguments to the constructor then it can just instantiate the object from the default constructor. However, it cannot determine the value of width from an instance of MyParameterizedBundle via reflection, so it cannot provide an appropriate parameter to the constructor. This is what the cloneType function is for. It tells Chisel how to create a new instance of a Bundle from a given object.
We hope to fix this wart in the future, but have not had the time to implement it. The most promising way is to automatically generate cloneType via Scala macro annotations.

how scala treat companion object?

I'm new to Scala with Java background.
In java when we want to share any field among different objects of class. we declare that field static.
class Car {
static NO_Of_TYRES = 4;
// some implementation.
public int getCarNoOftyres(){
NO_Of_TYRES; // although it's not a good practice to use static without class name
//but we can directly access static member in same class .
}
}
But in Scala we cannot declare static fields in class, we need to use object(companion object) for that.
In scala we will do like this,
class Car {
println(NO_Of_TYRES); // scala doesn't let us do that. gives error
println(Car.NO_Of_TYRES);// this is correct way.
}
object Car {
val NO_Of_TYRES: Int = 4;
}
I'm just curious, how scala treat companion objects?
what different these two key-words (class and object) makes ?
why does scala not letting us access NO_Of_TYRES directly in class?
Companion objects are singleton class instances (and definitions), just to recall singleton in java is more or less:
class Foo {
private Foo() { }
/* boilerplate to prevent cloning */
private static Foo instance = new Foo();
public static Foo getInstance() { return instance; }
public int bar() { return 5; }
}
and then to call method bar of this object:
Foo.getInstance().bar();
Scala removed all this boilerplate and lets you create equivalent thing with just
object Foo {
def bar: Int = 5
}
and to call it you only need
Foo.bar
now what's the difference between 'object' and 'companion object'? It's actually quite simple - companion object (so the object defined in the same file as a class and having the same name) has access to it's related class private fields and methods, and that's probably why scala authors decided that it should reside in the same file - so that references to private fields are in the same file as their declarations (which I think is always the case both in Java and Scala, unless using reflection magic)
I'd like to reference another answer about the same subject: What are the advantages of Scala's companion objects vs static methods?
See also Section 4.3 of Odersky's book Programming in Scala - Chapter 4 - Classes and Objects
Scala treats everything as pure objects with their instances. In this view a java static member is not part of any instance, it lives a separate and different life.
With the tricks of the keyword object and some syntactic sugar, you can achieve the same result but maintaining the stated principle: a single instance of that object is instantiated and a global access point for the instance is provided.
Scala, as you pointed out, cannot have static variables or methods, as known in Java. Instead, there are singleton objects, which are declared with the keyword object. Calling a method in this objects is like calling a static method in Java, except you are calling the method on a singleton object instead.
If this object has the same name of a class or trait, it is called the companion object of the class/trait. A companion object must be defined inside the same source file as the class/trait. A companion object differs from other objects as it has access rights to the related class/trait that other objects do not. In particular it can access methods and fields that are private in the class/trait.
Companion objects provide us with a means to associate functionality with a class without associating it with any instance of that class. They are commonly used to provide additional constructors

Scala: Do classes that extend a trait always take the traits properties?

Given the following:
class TestClass extends TestTrait {
def doesSomething() = methodValue + intValue
}
trait TestTrait {
val intValue = 4
val unusedValue = 5
def methodValue = "method"
def unusedMethod = "unused method"
}
When the above code runs, will TestClass actually have memory allocated to unusedValue or unusedMethod? I've used javap and I know that there exists an unusedValue and an unusedMethod, but I cannot determine if they are actually populated with any sort of state or memory allocation.
Basically, I'm trying to understand if a class ALWAYS gets all that a trait provides, or if the compiler is smart enough to only provide what the class actually uses from the trait?
If a trait always imposes itself on a class, it seems like it could be inefficient, since I expect many programmers will use traits as mixins and therefore wasting memory everywhere.
Thanks to all who read and help me get to the bottom of this!
Generally speaking, in languages like Scala and Java and C++, each class has a table of pointers to its instance methods. If your question is whether the Scala compiler will allocate slots in the method table for unusedMethod then I would say yes it should.
I think your question is whether the Scala compiler will look at the body of TestClass and say "whoa, I only see uses of methodValue and intValue, so being a good compiler I'm going to refrain from allocating space in TestClass's method table for unusedMethod. But it can't really do this in general. The reason is, TestClass will be compiled into a class file TestClass.class and this class may be used in a library by programmers that you don't even know.
And what will they want to do with your class? This:
var x = new TestClass();
print(x.unusedMethod)
See, the thing is the compiler can't predict who is going to use this class in the future, so it puts all methods into its method table, even the ones not called by other methods in the class. This applies to methods declared in the class or picked up via an implemented trait.
If you expect the compiler to do global system-wide static analysis and optimization over a fixed, closed system then I suppose in theory it could whittle away such things, but I suspect that would be a very expensive optimization and not really worth it. If you need this kind of memory savings you would be better off writing smaller traits on your own. :)
It may be easiest to think about how Scala implements traits at the JVM level:
An interface is generated with the same name as the trait, containing all the trait's method signatures
If the trait contains only abstract methods, then nothing more is needed
If the trait contains any concrete methods, then the definition of these will be copied into any class that mixes in the trait
Any vals/vars will also get copied verbatim
It's also worth noting how a hypothetical var bippy: Int is implemented in equivalent java:
private int bippy; //backing field
public int bippy() { return this.bippy; } //getter
public void bippy_$eq(int x) { this.bippy = x; } //setter
For a val, the backing field is final and no setter is generated
When mixing-in a trait, the compiler doesn't analyse usage. For one thing, this would break the contract made by the interface. It would also take an unacceptably long time to perform such an analysis. This means that you will always inherit the cost of the backing fields from any vals/vars that get mixed in.
As you already hinted, if this is a problem then the solution is just use defs in your traits.
There are several other benefits to such an approach and, thanks to the uniform access principle, you can always override such a method with a val further down in the inheritance hierarchy if you need to.

Calling a protected static Java method from Scala

I have a library here with some Java classes. One class has some protected static methods, which I realize is sorta an OOP no-no but I can't change its code. Assuming I have a Scala class that subclasses the aforementioned Java class, how can I call its protected static members?
See Frequently Asked Questions - Java Interoperability:
This is a known limitation of Scala:
there is no notion of 'static' members
in Scala. Instead, Scala treats
static members of class Y as members
of the singleton object Y (the
companion object of class Y). When
inheriting from this class, one can
access only protected members of class
Y but cannot access protected members
of object Y.
There's no way Scala can simulate
static protected without impairing the
integrity of Scala's object model in a
fundamental way, so this is not going
to change. To work around this
limitation, one has to create an
implementation of the enclosing class
with Java code which encapsulates all
accesses to the protected static inner
class.
See ticket #1806 for more
information and a concrete example of
the limitation and its workaround.

Why are singleton objects more object-oriented?

In Programming in Scala: A Comprehensive Step-by-Step Guide, the author said:
One way in which Scala is more
object-oriented than Java is that
classes in Scala cannot have static
members. Instead, Scala has singleton
objects.
Why is a singleton object more object-oriented? What's the good of not using static members, but singleton objects?
Trying for the "big picture"; most of this has been covered in other answers, but there doesn't seem to be a single comprehensive reply that puts it all together and joins the dots. So here goes...
Static methods on a class are not methods on an object, this means that:
Static members can't be inherited from a parent class/trait
Static members can't be used to implement an interface
The static members of a class can't be passed as an argument to some function
(and because of the above points...)
Static members can't be overridden
Static members can't be polymorphic
The whole point of objects is that they can inherit from parent objects, implement interfaces, and be passed as arguments - static members have none of these properties, so they aren't truly object-oriented, they're little more than a namespace.
Singleton objects, on the other hand, are fully-fledged members of the object community.
Another very useful property of singletons is that they can easily be changed at some later point in time to not be singletons, this is a particularly painful refactoring if you start from static methods.
Imagine you designed a program for printing addresses and represented interactions with the printer via static methods on some class, then later you want to be able to add a second printer and allow the user to chose which one they'll use... It wouldn't be a fun experience!
Singleton objects behave like classes in that they can extend/implement other types.
Can't do that in Java with just static classes -- it's pretty sugar over the Java singleton pattern with a getInstance that allows (at least) nicer namespaces/stable identifiers and hides the distinction.
Hint: it's called object-oriented programming.
Seriously.
Maybe I am missing something fundamentally important, but I don't see what the fuss is all about: objects are more object-oriented than non-objects because they are objects. Does that really need an explanation?
Note: Although it sure sounds that way, I am really not trying to sound smug here. I have looked at all the other answers and I found them terribly confusing. To me, it's kind of obvious that objects and methods are more object-oriented than namespaces and procedures (which is what static "methods" really are) by the very definition of "object-oriented".
An alternative to having singleton objects would be to make classes themselves objects, as e.g. Ruby, Python, Smalltalk, Newspeak do.
For static members, there is no object. The class really just is a namespace.
In a singleton, there is always at least one object.
In all honesty, it's splitting hairs.
It's more object oriented in the sense that given a Scala class, every method call is a method call on that object. In Java, the static methods don't interact with the object state.
In fact, given an object a of a class A with the static method m(), it's considered bad practice to call a.m(). Instead it's recommended to call A.m() (I believe Eclipse will give you a warning). Java static methods can't be overridden, they can just be hidden by another method:
class A {
public static void m() {
System.out.println("m from A");
}
}
public class B extends A {
public static void m() {
System.out.println("m from B");
}
public static void main(String[] args) {
A a = new B();
a.m();
}
}
What will a.m() print?
In Scala, you would stick the static methods in companion objects A and B and the intent would be clearer as you would refer explicitly to the companion A or B.
Adding the same example in Scala:
class A
object A {
def m() = println("m from A")
}
class B extends A
object B {
def m() = println("m from B")
def main(args: Array[String]) {
val a = new B
A.m() // cannot call a.m()
}
}
There is some difference that may be important in some scenarios. In Java you
can't override static method so if you had class with static methods you would not be able to customize and override part of its behavior. If you used singleton object, you could just plug singleton created from subclass.
It's a marketing thing, really. Consider two examples:
class foo
static const int bar = 42;
end class
class superfoo
Integer bar = ConstInteger.new(42);
end class
Now, what are the observable differences here?
in a well-behaved language, the additional storage created is the same.
Foo.bar and Superfoo.bar have exactly the same signatures, access, and so on.
Superfoo.bar may be allocated differently but that's an implementation detail
It reminds me of the religious wars 20 years ago over whether C++ or Java were "really" Object Oriented, since after all both exposed primitive types that aren't "really" objects -- so, for example you can't inherit from int but can from Integer.