Input Data (example):
40A3B35A3C
30A5B28A2C2B
Desired output (per-line) is a single number determined by the composition of the code 40A3B35A3C and the following rules:
if A - add the proceeding number to the running total
if B - add the proceeding number to the running total
if C - subtract the proceeding number from the running total
40A 3B 35A 3C would thus produce 40 + 3 + 35 - 3 = 75.
Output from both lines:
75
63
Is there an efficient way to achieve this for a particular column (such as $F[2]) in a tab-delimited .txt file using a one-liner? I have considered splitting the entire code into individual characters, then performing if statement checks to detect A/B/C, but my Perl knowledge is limited and I am unsure how to go about this.
When you use split with a capture, the captured group is returned from split, too.
perl -lane '
#ar = split /([ABC])/, $F[2];
$s = 0;
$s += $n * ("C" eq $op ? -1 : 1) while ($n, $op) = splice #ar, 0, 2;
print $s
' < input
Or maybe more declarative:
BEGIN { %one = ( A => 1,
B => 1,
C => -1 ) }
#ar = split /([ABC])/, $F[2];
$s = 0;
$s += $n * $one{$op} while ($n, $op) = splice #ar, 0, 2;
print $s
When working through a string like this, it's useful to know that regular expressions can return a list of results.
E.g.
my #matches = $str =~ m/(\d+[A-C])/g; #will catch repeated instances
So you can do something like this:
#!/usr/bin/env perl
use strict;
use warnings;
while (<DATA>) {
my $total;
#break the string into digit+letter groups.
for (m/(\d+[A-C])/g) {
#separate out this group into num and code.
my ( $num, $code ) = m/(\d+)([A-C])/;
print "\t",$num, " => ", $code, "\n";
if ( $code eq "C" ) {
$total -= $num;
}
else {
$total += $num;
}
}
print $total, " => ", $_;
}
__DATA__
40A3B35A3C
30A5B28A2C2B
perl -lne 'push #a,/([\d]+)[AB]/g;
push #b,/([\d]+)[C]/g;
$sum+=$_ for(#a);$sum-=$_ for(#b);
print $sum;#a=#b=();undef $sum' Your_file
how it works
use the command line arg as the input
set the hash "%op" to the
operations per letter
substitute the letters for operators in the
input evaluate the substituted input as an expression
use strict;
use warnings;
my %op=qw(A + B + C -);
$ARGV[0] =~ s/(\d+)(A|B|C)/$op{$2} $1/g;
print eval($ARGV[0]);
This is my program , I want to let user type a matrix line by line and print the while matrix , but I can't see the matrix
The user will type
1 2 3
4 5 6
7 8 9
like this
and I want to let it show
1 2 3
4 5 6
7 8 9
Perl program
$Num = 3;
while($Num > 0 )
{
$Row = <STDIN>;
$Row = chomp($Row);
#Row_array = split(" ",$Row);
push #P_matrix , #Row_array;
#Row_array = ();
$Num = $Num - 1;
}
for($i=0;$i<scalar(#P_matrix);$i++)
{
for($j=0;$j<scalar(#P_matrix[$i]);$j++)
{
printf "$d ",$P_matrix[$i][$j];
}
print "\n";
}
I change the expression => printf "$d ",$P_matrix[$i][$j]; to print $P_matrix[$i][$j]
but still don't work.
To create a multi-dimensional array, you have to use references. Use
push #P_matrix, [ #Row_array ];
to create the desired structure.
Also, chomp does not return the modified string. Simply use
chomp $Row;
to remove a newline from $Row. Moreover, chomp is not needed at all if you split on ' '.
printf uses % as the formatting character, not $.
You can use Data::Dumper to inspect complex data structures. Use strict and warnings to help you avoid common problems. Here is how I would write your program:
#!/usr/bin/perl
use warnings;
use strict;
use Data::Dumper;
my #p_matrix;
push #p_matrix , [ split ' ' ] while <>;
warn Dumper \#p_matrix;
for my $i (0 .. $#p_matrix)
{
for my $j (0 .. $#{ $p_matrix[$i] })
{
printf '%d ', $p_matrix[$i][$j];
}
print "\n";
}
First and foremost please use use strict; use warnings;
Issues in your code:
You have a single dimensional array, but your are trying to access
it like two dimensional array. In order to make 2 dimensional array push the array reference of Row_array in #P_matrix as [#Row_array].
Where is $d defined? declare $d as my $d or our $d if you mean $d as scalar variable.
OR
For using %d, use need sprintf. Please read this.
I want Perl (5.8.8) to find out what word has the most letters in common with the other words in an array - but only letters that are in the same place. (And preferably without using libs.)
Take this list of words as an example:
BAKER
SALER
BALER
CARER
RUFFR
Her BALER is the word that has the most letters in common with the others. It matches BAxER in BAKER, xALER in SALER, xAxER in CARER, and xxxxR in RUFFR.
I want Perl to find this word for me in an arbitrary list of words with the same length and case. Seems I've hit the wall here, so help is much appreciated!
What I've tried until now
Don't really have much of a script at the moment:
use strict;
use warnings;
my #wordlist = qw(BAKER SALER MALER BARER RUFFR);
foreach my $word (#wordlist) {
my #letters = split(//, $word);
# now trip trough each iteration and work magic...
}
Where the comment is, I've tried several kinds of code, heavy with for-loops and ++ varables. Thus far, none of my attempts have done what I need it to do.
So, to better explain: What I need is to test word for word against the list, for each letterposition, to find the word that has the most letters in common with the others in the list, at that letter's position.
One possible way could be to first check which word(s) has the most in common at letter-position 0, then test letter-position 1, and so on, until you find the word that in sum has the most letters in common with the other words in the list. Then I'd like to print the list like a matrix with scores for each letterposition plus a total score for each word, not unlike what DavidO suggest.
What you'd in effect end up with is a matrix for each words, with the score for each letter position, and the sum total score fore each word in the matrix.
Purpose of the Program
Hehe, I might as well say it: The program is for hacking terminals in the game Fallout 3. :D My thinking is that it's a great way to learn Perl while also having fun gaming.
Here's one of the Fallout 3 terminal hacking tutorials I've used for research: FALLOUT 3: Hacking FAQ v1.2, and I've already made a program to shorten the list of words, like this:
#!/usr/bin/perl
# See if one word has equal letters as the other, and how many of them are equal
use strict;
use warnings;
my $checkword = "APPRECIATION"; # the word to be checked
my $match = 4; # equal to the match you got from testing your checkword
my #checkletters = split(//, $checkword); #/
my #wordlist = qw(
PARTNERSHIPS
REPRIMANDING
CIVILIZATION
APPRECIATION
CONVERSATION
CIRCUMSTANCE
PURIFICATION
SECLUSIONIST
CONSTRUCTION
DISAPPEARING
TRANSMISSION
APPREHENSIVE
ENCOUNTERING
);
print "$checkword has $match letters in common with:\n";
foreach my $word (#wordlist) {
next if $word eq $checkword;
my #letters = split(//, $word);
my $length = #letters; # determine length of array (how many letters to check)
my $eq_letters = 0; # reset to 0 for every new word to be tested
for (my $i = 0; $i < $length; $i++) {
if ($letters[$i] eq $checkletters[$i]) {
$eq_letters++;
}
}
if ($eq_letters == $match) {
print "$word\n";
}
}
# Now to make a script on to find the best word to check in the first place...
This script will yield CONSTRUCTION and TRANSMISSION as its result, just as in the game FAQ. The trick to the original question, though (and the thing I didn't manage to find out on my own), is how to find the best word to try in the first place, i.e. APPRECIATION.
OK, I've now supplied my own solution based on your help, and consider this thread closed. Many, many thanks to all the contributers. You've helped tremendously, and on the way I've also learned a lot. :D
Here's one way. Having re-read your spec a couple of times I think it's what you're looking for.
It's worth mentioning that it's possible there will be more than one word with an equal top score. From your list there's only one winner, but it's possible that in longer lists, there will be several equally winning words. This solution deals with that. Also, as I understand it, you count letter matches only if they occur in the same column per word. If that's the case, here's a working solution:
use 5.012;
use strict;
use warnings;
use List::Util 'max';
my #words = qw/
BAKER
SALER
BALER
CARER
RUFFR
/;
my #scores;
foreach my $word ( #words ) {
my $score;
foreach my $comp_word ( #words ) {
next if $comp_word eq $word;
foreach my $pos ( 0 .. ( length $word ) - 1 ) {
$score++ if substr( $word, $pos, 1 ) eq substr( $comp_word, $pos, 1);
}
}
push #scores, $score;
}
my $max = max( #scores );
my ( #max_ixs ) = grep { $scores[$_] == $max } 0 .. $#scores;
say "Words with most matches:";
say for #words[#max_ixs];
This solution counts how many times per letter column each word's letters match other words. So for example:
Words: Scores: Because:
ABC 1, 2, 1 = 4 A matched once, B matched twice, C matched once.
ABD 1, 2, 1 = 4 A matched once, B matched twice, D matched once.
CBD 0, 2, 1 = 3 C never matched, B matched twice, D matched once.
BAC 0, 0, 1 = 1 B never matched, A never matched, C matched once.
That gives you the winners of ABC and ABD, each with a score of four positional matches. Ie, the cumulative times that column one, row one matched column one row two, three, and four, and so on for the subsequent columns.
It may be able to be optimized further, and re-worded to be shorter, but I tried to keep the logic fairly easy to read. Enjoy!
UPDATE / EDIT
I thought about it and realized that though my existing method does exactly what your original question requested, it did it in O(n^2) time, which is comparatively slow. But if we use hash keys for each column's letters (one letter per key), and do a count of how many times each letter appears in the column (as the value of the hash element), we could do our summations in O(1) time, and our traversal of the list in O(n*c) time (where c is the number of columns, and n is the number of words). There's some setup time too (creation of the hash). But we still have a big improvement. Here is a new version of each technique, as well as a benchmark comparison of each.
use strict;
use warnings;
use List::Util qw/ max sum /;
use Benchmark qw/ cmpthese /;
my #words = qw/
PARTNERSHIPS
REPRIMANDING
CIVILIZATION
APPRECIATION
CONVERSATION
CIRCUMSTANCE
PURIFICATION
SECLUSIONIST
CONSTRUCTION
DISAPPEARING
TRANSMISSION
APPREHENSIVE
ENCOUNTERING
/;
# Just a test run for each solution.
my( $top, $indexes_ref );
($top, $indexes_ref ) = find_top_matches_force( \#words );
print "Testing force method: $top matches.\n";
print "#words[#$indexes_ref]\n";
( $top, $indexes_ref ) = find_top_matches_hash( \#words );
print "Testing hash method: $top matches.\n";
print "#words[#$indexes_ref]\n";
my $count = 20000;
cmpthese( $count, {
'Hash' => sub{ find_top_matches_hash( \#words ); },
'Force' => sub{ find_top_matches_force( \#words ); },
} );
sub find_top_matches_hash {
my $words = shift;
my #scores;
my $columns;
my $max_col = max( map { length $_ } #{$words} ) - 1;
foreach my $col_idx ( 0 .. $max_col ) {
$columns->[$col_idx]{ substr $_, $col_idx, 1 }++
for #{$words};
}
foreach my $word ( #{$words} ) {
my $score = sum(
map{
$columns->[$_]{ substr $word, $_, 1 } - 1
} 0 .. $max_col
);
push #scores, $score;
}
my $max = max( #scores );
my ( #max_ixs ) = grep { $scores[$_] == $max } 0 .. $#scores;
return( $max, \#max_ixs );
}
sub find_top_matches_force {
my $words = shift;
my #scores;
foreach my $word ( #{$words} ) {
my $score;
foreach my $comp_word ( #{$words} ) {
next if $comp_word eq $word;
foreach my $pos ( 0 .. ( length $word ) - 1 ) {
$score++ if
substr( $word, $pos, 1 ) eq substr( $comp_word, $pos, 1);
}
}
push #scores, $score;
}
my $max = max( #scores );
my ( #max_ixs ) = grep { $scores[$_] == $max } 0 .. $#scores;
return( $max, \#max_ixs );
}
The output is:
Testing force method: 39 matches.
APPRECIATION
Testing hash method: 39 matches.
APPRECIATION
Rate Force Hash
Force 2358/s -- -74%
Hash 9132/s 287% --
I realize your original spec changed after you saw some of the other options provided, and that's sort of the nature of innovation to a degree, but the puzzle was still alive in my mind. As you can see, my hash method is 287% faster than the original method. More fun in less time!
As a starting point, you can efficiently check how many letters they have in common with:
$count = ($word1 ^ $word2) =~ y/\0//;
But that's only useful if you loop through all possible pairs of words, something that isn't necessary in this case:
use strict;
use warnings;
my #words = qw/
BAKER
SALER
BALER
CARER
RUFFR
/;
# you want a hash to indicate which letters are present how many times in each position:
my %count;
for my $word (#words) {
my #letters = split //, $word;
$count{$_}{ $letters[$_] }++ for 0..$#letters;
}
# then for any given word, you get the count for each of its letters minus one (because the word itself is included in the count), and see if it is a maximum (so far) for any position or for the total:
my %max_common_letters_count;
my %max_common_letters_words;
for my $word (#words) {
my #letters = split //, $word;
my $total;
for my $position (0..$#letters, 'total') {
my $count;
if ( $position eq 'total' ) {
$count = $total;
}
else {
$count = $count{$position}{ $letters[$position] } - 1;
$total += $count;
}
if ( ! $max_common_letters_count{$position} || $count >= $max_common_letters_count{$position} ) {
if ( $max_common_letters_count{$position} && $count == $max_common_letters_count{$position} ) {
push #{ $max_common_letters_words{$position} }, $word;
}
else {
$max_common_letters_count{$position} = $count;
$max_common_letters_words{$position} = [ $word ];
}
}
}
}
# then show the maximum words for each position and in total:
for my $position ( sort { $a <=> $b } grep $_ ne 'total', keys %max_common_letters_count ) {
printf( "Position %s had a maximum of common letters of %s in words: %s\n",
$position,
$max_common_letters_count{$position},
join(', ', #{ $max_common_letters_words{$position} })
);
}
printf( "The maximum total common letters was %s in words(s): %s\n",
$max_common_letters_count{'total'},
join(', ', #{ $max_common_letters_words{'total'} })
);
Here's a complete script. It uses the same idea that ysth mentioned (although I had it independently). Use bitwise xor to combine the strings, and then count the number of NULs in the result. As long as your strings are ASCII, that will tell you how many matching letters there were. (That comparison is case sensitive, and I'm not sure what would happen if the strings were UTF-8. Probably nothing good.)
use strict;
use warnings;
use 5.010;
use List::Util qw(max);
sub findMatches
{
my ($words) = #_;
# Compare each word to every other word:
my #matches = (0) x #$words;
for my $i (0 .. $#$words-1) {
for my $j ($i+1 .. $#$words) {
my $m = ($words->[$i] ^ $words->[$j]) =~ tr/\0//;
$matches[$i] += $m;
$matches[$j] += $m;
}
}
# Find how many matches in the best word:
my $max = max(#matches);
# Find the words with that many matches:
my #wanted = grep { $matches[$_] == $max } 0 .. $#matches;
wantarray ? #$words[#wanted] : $words->[$wanted[0]];
} # end findMatches
my #words = qw(
BAKER
SALER
BALER
CARER
RUFFR
);
say for findMatches(\#words);
Haven't touched perl in a while, so pseudo-code it is. This isn't the fastest algorithm, but it will work fine for a small amount of words.
totals = new map #e.g. an object to map :key => :value
for each word a
for each word b
next if a equals b
totals[a] = 0
for i from 1 to a.length
if a[i] == b[i]
totals[a] += 1
end
end
end
end
return totals.sort_by_key.last
Sorry about the lack of perl, but if you code this into perl, it should work like a charm.
A quick note on run-time: this will run in time number_of_words^2 * length_of_words, so on a list of 100 words, each of length 10 characters, this will run in 100,000 cycles, which is adequate for most applications.
Here's a version that relies on transposing the words in order to count the identical characters. I used the words from your original comparison, not the code.
This should work with any length words, and any length list. Output is:
Word score
---- -----
BALER 12
SALER 11
BAKER 11
CARER 10
RUFFR 4
The code:
use warnings;
use strict;
my #w = qw(BAKER SALER BALER CARER RUFFR);
my #tword = t_word(#w);
my #score;
push #score, str_count($_) for #tword;
#score = t_score(#score);
my %total;
for (0 .. $#w) {
$total{$w[$_]} = $score[$_];
}
print "Word\tscore\n";
print "----\t-----\n";
print "$_\t$total{$_}\n" for (sort { $total{$b} <=> $total{$a} } keys %total);
# transpose the words
sub t_word {
my #w = #_;
my #tword;
for my $word (#w) {
my $i = 0;
while ($word =~ s/(.)//) {
$tword[$i++] .= $1;
}
}
return #tword;
}
# turn each character into a count
sub str_count {
my $str = uc(shift);
while ( $str =~ /([A-Z])/ ) {
my $chr = $1;
my $num = () = $str =~ /$chr/g;
$num--;
$str =~ s/$chr/$num /g;
}
return $str;
}
# sum up the character counts
# while reversing the transpose
sub t_score {
my #count = #_;
my #score;
for my $num (#count) {
my $i = 0;
while( $num =~ s/(\d+) //) {
$score[$i++] += $1;
}
}
return #score;
}
Here is my attempt at an answer. This will also allow you to see each individual match if you need it. (ie. BALER matches 4 characters in BAKER). EDIT: It now catches all matches if there is a tie between words (I added "CAKER" to the list to test).
#! usr/bin/perl
use strict;
use warnings;
my #wordlist = qw( BAKER SALER BALER CARER RUFFR CAKER);
my %wordcomparison;
#foreach word, break it into letters, then compare it against all other words
#break all other words into letters and loop through the letters (both words have same amount), adding to the count of matched characters each time there's a match
foreach my $word (#wordlist) {
my #letters = split(//, $word);
foreach my $otherword (#wordlist) {
my $count;
next if $otherword eq $word;
my #otherwordletters = split (//, $otherword);
foreach my $i (0..$#letters) {
$count++ if ( $letters[$i] eq $otherwordletters[$i] );
}
$wordcomparison{"$word"}{"$otherword"} = $count;
}
}
# sort (unnecessary) and loop through the keys of the hash (words in your list)
# foreach key, loop through the other words it compares with
#Add a new key: total, and sum up all the matched characters.
foreach my $word (sort keys %wordcomparison) {
foreach ( sort keys %{ $wordcomparison{$word} }) {
$wordcomparison{$word}{total} += $wordcomparison{$word}{$_};
}
}
#Want $word with highest total
my #max_match = (sort { $wordcomparison{$b}{total} <=> $wordcomparison{$a}{total} } keys %wordcomparison );
#This is to get all if there is a tie:
my $maximum = $max_match[0];
foreach (#max_match) {
print "$_\n" if ($wordcomparison{$_}{total} >= $wordcomparison{$maximum}{total} )
}
The output is simply: CAKER BALER and BAKER.
The hash %wordcomparison looks like:
'SALER'
{
'RUFFR' => 1,
'BALER' => 4,
'BAKER' => 3,
'total' => 11,
'CARER' => 3
};
You can do this, using a dirty regex trick to execute code if a letter matches in its place, but not otherwise, thankfully it's quite easy to build the regexes as you go:
An example regular expression is:
(?:(C(?{ $c++ }))|.)(?:(A(?{ $c++ }))|.)(?:(R(?{ $c++ }))|.)(?:(E(?{ $c++ }))|.)(?:(R(?{ $c++ }))|.)
This may or may not be fast.
use 5.12.0;
use warnings;
use re 'eval';
my #words = qw(BAKER SALER BALER CARER RUFFR);
my ($best, $count) = ('', 0);
foreach my $word (#words) {
our $c = 0;
foreach my $candidate (#words) {
next if $word eq $candidate;
my $regex_str = join('', map {"(?:($_(?{ \$c++ }))|.)"} split '', $word);
my $regex = qr/^$regex_str$/;
$candidate =~ $regex or die "did not match!";
}
say "$word $c";
if ($c > $count) {
$best = $word;
$count = $c;
}
}
say "Matching: first best: $best";
Using xor trick will be fast but assumes a lot about the range of characters you might encounter. There are many ways in which utf-8 will break with that case.
Many thanks to all the contributers! You've certainly shown me that I still have a lot to learn, but you have also helped me tremendously in working out my own answer. I'm just putting it here for reference and possible feedback, since there are probably better ways of doing it. To me this was the simplest and most straight forward approach I could find on my own. Enjøy! :)
#!/usr/bin/perl
use strict;
use warnings;
# a list of words for testing
my #list = qw(
BAKER
SALER
BALER
CARER
RUFFR
);
# populate two dimensional array with the list,
# so we can compare each letter with the other letters on the same row more easily
my $list_length = #list;
my #words;
for (my $i = 0; $i < $list_length; $i++) {
my #letters = split(//, $list[$i]);
my $letters_length = #letters;
for (my $j = 0; $j < $letters_length; $j++) {
$words[$i][$j] = $letters[$j];
}
}
# this gives a two-dimensionla array:
#
# #words = ( ["B", "A", "K", "E", "R"],
# ["S", "A", "L", "E", "R"],
# ["B", "A", "L", "E", "R"],
# ["C", "A", "R", "E", "R"],
# ["R", "U", "F", "F", "R"],
# );
# now, on to find the word with most letters in common with the other on the same row
# add up the score for each letter in each word
my $word_length = #words;
my #letter_score;
for my $i (0 .. $#words) {
for my $j (0 .. $#{$words[$i]}) {
for (my $k = 0; $k < $word_length; $k++) {
if ($words[$i][$j] eq $words[$k][$j]) {
$letter_score[$i][$j] += 1;
}
}
# we only want to add in matches outside the one we're testing, therefore
$letter_score[$i][$j] -= 1;
}
}
# sum each score up
my #scores;
for my $i (0 .. $#letter_score ) {
for my $j (0 .. $#{$letter_score[$i]}) {
$scores[$i] += $letter_score[$i][$j];
}
}
# find the highest score
my $max = $scores[0];
foreach my $i (#scores[1 .. $#scores]) {
if ($i > $max) {
$max = $i;
}
}
# and print it all out :D
for my $i (0 .. $#letter_score ) {
print "$list[$i]: $scores[$i]";
if ($scores[$i] == $max) {
print " <- best";
}
print "\n";
}
When run, the script yields the following:
BAKER: 11
SALER: 11
BALER: 12 <- best
CARER: 10
RUFFR: 4
I have a CSV file that I use split to parse into an array of N items, where N is a multiple of 3.
Is there a way i can do this
foreach my ( $a, $b, $c ) ( #d ) {}
similar to Python?
I addressed this issue in my module List::Gen on CPAN.
use List::Gen qw/by/;
for my $items (by 3 => #list) {
# do something with #$items which will contain 3 element slices of #list
# unlike natatime or other common solutions, the elements in #$items are
# aliased to #list, just like in a normal foreach loop
}
You could also import the mapn function, which is used by List::Gen to implement by:
use List::Gen qw/mapn/;
mapn {
# do something with the slices in #_
} 3 => #list;
You can use List::MoreUtils::natatime. From the docs:
my #x = ('a' .. 'g');
my $it = natatime 3, #x;
while (my #vals = $it->()) {
print "#vals\n";
}
natatime is implemented in XS so you should prefer it for efficiency. Just for illustration purposes, here is how one might implement a three element iterator generator in Perl:
#!/usr/bin/perl
use strict; use warnings;
my #v = ('a' .. 'z' );
my $it = make_3it(\#v);
while ( my #tuple = $it->() ) {
print "#tuple\n";
}
sub make_3it {
my ($arr) = #_;
{
my $lower = 0;
return sub {
return unless $lower < #$arr;
my $upper = $lower + 2;
#$arr > $upper or $upper = $#$arr;
my #ret = #$arr[$lower .. $upper];
$lower = $upper + 1;
return #ret;
}
}
}
my #list = (qw(one two three four five six seven eight nine));
while (my ($m, $n, $o) = splice (#list,0,3)) {
print "$m $n $o\n";
}
this outputs:
one two three
four five six
seven eight nine
#z=(1,2,3,4,5,6,7,8,9,0);
for( #tuple=splice(#z,0,3); #tuple; #tuple=splice(#z,0,3) )
{
print "$tuple[0] $tuple[1] $tuple[2]\n";
}
produces:
1 2 3
4 5 6
7 8 9
0
Not easily. You'd be better off making #d an array of three-element tuples, by pushing the elements onto the array as an array reference:
foreach my $line (<>)
push #d, [ split /,/, $line ];
(Except that you really ought to use one of the CSV modules from CPAN.
As of Perl v5.36 you can do exactly that:
foreach my ( $a, $b, $c ) ( #d ) { ... }
It's implemented as for_list experimental feature, so you can ignore the warning the usual way with use experimental qw(for_list);
For versions before v5.36 we'll rely on while/splice as mentioned above.