I am trying to write a function in MATLAB that takes 1x3 vectors as input. My code looks something like this:
function myFunction=([x1, x2, x3], [y1, y2, y3], [z1, z2, z3])
where all inputs are numbers, and then in the body of the function I perform some calculations indexing through the numerical values in the vectors. i want the vectors to be user input, so the user will enter the vectors and their components (x1, x2, etc.) into the function argument. However, I am getting an error saying "Invalid expression. When calling a function or indexing a variable, use parentheses. Otherwise, check for mismatched delimiters." Therefore I believe I either have the syntax or something else wrong. I know MATLAB is supposed to be able to take vector input in functions, so please let me know what I am doing wrong. Thanks!
What you need to do is declare your function like this:
function myFunction(x,y,z)
% your function code here
end
Then within your function you can access the individual elements of the vectors using x(1), y(2), etc.
To call the function, including whatever number you like, you can enter on the Matlab command window (for example),
myFunction([1 2 3],[4 5 6],[7 8 9]) and the code in your function will be called with the x variable set to the vector [1,2,3], the y variable set to [4,5,6] and z to [7,8,9]. The use of commas to delineate values is optional. If your function then accesses y(2) it will get the second value of the y vector which will be 5 - it is important to note that indexing in Matlab is 1-based so the 1st element of x is obtained with x(1).
If you need to return values you can use:
function [a,b,c] = myFunction(x,y,z)
Then just assign the a, b or c in your code before the end statement.
See the offical Matlab documentation for more info.
I would add that much of the advantage of matlab is dealing with data in a vectorised form, so if you can avoid splitting out into separate elements I would do so. For example, if you need to add two vecors, you could do z = [x(1)+y(1), x(2)+y(2), x(3)+y(3)], but much better (more readable, more maintainable, faster) is z=x+y.
I am trying to solve the following function with fminunc:
Σ((x(i)-1).^2) for i = 1 to 20
My code is below:
fun4 = #(x) sum((x(i)-1).^2, i, 1, 20)
[x,fval,exitflag,output]= fminunc(fun4,[1,1])
And, it gives the following error:
??? Error using ==> sym.sym>notimplemented at 2514
Function 'subsindex' is not implemented for MuPAD symbolic objects.
Could you help me, please?
You should check out the sum documentation for details about how to use it to sum over a vector.
In your case, if you have a vector x of at least 20 elements, you can get the subvector of "x(i) for i in the range 1 to 20" by x(1:20).
You can subtract scalars from a vector just by using the standard subtract sign, but to then square all of the elements individually you should use an "element-wise" operator (having a dot before the operator, like .^). As it happens, you were already doing this anyway.
The 2nd, 3rd and 4th arguments you were passing to sum are causing an error, because sum doesn't expect the arguments you are passing to it. For further details on the inputs it does expect see the linked docs.
All of this means your function can be simplified:
fun4 = #(x) sum((x(1:20)-1).^2);
I am working on my thesis and running in some programming problems in Matlab. I am trying to implement the ''golden Bisection Method'' to speed up my code. To this end, I've consulted the build in function FZERO.
So I am determining the difference between two vectors which are both (1x20).
Difference = Clmax_dist-cl_vec;
Clmax_dist comes from a semi-empirical method and cl_vec comes from the excecution of an external AVL.exe file.
Essentially, this difference depends only on one single variable AOA because the Clmax_dist vector is a constant. Hence, I am constantly feeding a new AOA value to the AVL.exe to obtain a new cl_vec and compare this again to the constant Clmax_dist.
I am iterating this until one of the element in the vector becomes either zero or negative. My loop stops and reveals the final AOA. This is a time consuming method and I wanted to use FZERO to speed this up.
However, the FZERO documentation reveals that it only works on function which has a scalar as input. Hence, my question is: How can I use FZERO with a function which has a vector as an output. Or do i need to do something totally different?
I've tried the following:
[Difference] = obj.DATCOMSPANLOADING(AOA);
fun=#obj.DATCOMSPANLOADING;
AOA_init = [1 20];
AOA_root = fzero(fun,AOA_init,'iter');
this gave me the following error:
Operands to the || and && operators must be convertible to logical scalar values.
Error in fzero (line 423)
while fb ~= 0 && a ~= b
Error in CleanCLmax/run (line 11)
AOA_root = fzero(fun,AOA_init,'iter');
Error in InitiatorController/moduleRunner (line 11)
ModuleHandle.run;
Error in InitiatorController/runModule (line 95)
obj.moduleRunner(ModuleHandle);
Error in RunSteps (line 7)
C.runModule('CleanCLmax');
The DATCOMSPANDLOADING function contains the following:
function [Difference] = DATCOMSPANLOADING(obj,AOA)
[Input]= obj.CLmaxInput; % Creates Input structure and airfoil list
obj.writeAirfoils(Input); % Creates airfoil coordinate files in AVL directory
[Clmax_dist,YClmax,Cla_mainsections] = obj.Clmax_spanwise(Input); % Creates spanwise section CLmax with ESDU method
[CLa] = obj.WingLiftCurveSlope(Input,Cla_mainsections); % Wing lift curve slope
[Yle_wing,cl_vec] = obj.AVLspanloading(Input,CLa,AOA); % Creates spanloading with AVL
Difference = Clmax_dist-cl_vec;
end
If I need to elaborate further, feel free to ask. And of course, Thank you very much.
fzero indeed only works on scalars. However, you can turn your criterion into a scalar: You are interested in AOA where any of the elements in the vector becomes zero, in which case you rewrite your objective function to return two output arguments: minDifference, which is min(Difference), and Difference. The first output, minDifference is the minimum of the difference, i.e. what fzero should try to optimize (from your question, I'm assuming all values start positive). The second output you'd use to inspect your difference vector in the end.
I want to modify a simple function that solves quadratics so that if there is a repeated root it will only output one of them. I have named x1, x2 as my two outputs - how do I 'supress' one of them in the case of a repeated root?
I've tried x1=x2= -b/(2*a) but it comes up with the error 'The expression to the left of the equals sign is not a valid target for an assignment.' Why doesn't this work? And how can i get it to work?
There are many ways to solve this. The best is probably to output a single variable, an array or a cell, that contain a variable number of elements corresponding to your roots.
In your case this gives something like:
function out = myfunction(...)
...
if x1==x2
out = x1
else
out = [x1 x2];
end
You can of course modify it to take also into account the cases where there is no solution.
Also, you should know that there exists a built-in function that finds all polynomial roots for you: it is roots.
Best,
I must to use angle = atan2(norm(cross(a,b)),dot(a,b)), for calculating the angle between two vectors a,b and these are double type and norm is undefined for this type. How do I resolve this problem? I need to calculate the angle between two vectors this way.
In your comments, you have shown us how you are actually writing out the angle calculation and it is not the same as how you have put it in your post.
atan2(norm(cross(I(i,j,:),I_avg)),dot(I(i,j,:),I_avg));
I is an image you are loading in. I'm assuming it's colour because of the way you are subsetting I. Because I is a 3D matrix, doing I(i,j,:) will give you a 1 x 1 x 3 vector when in fact this has to be a 1D vector. norm does not recognize this structure which is why you're getting this error. Therefore, you need to use squeeze to remove the singleton dimensions so that this will become a 3 x 1 vector, rather than a 1 x 1 x 3 vector. As such, you need to rewrite your code so that you're doing this instead. Bear in mind that in your comments, angle is always overwritten inside the for loop, so you probably want to save the results of each pixel. With this, you probably want to create a 2D array of angles that will store these results. In other words:
I=imread('thesis.jpg');
I = double(I);
angles = zeros(m,n);
I_avg = squeeze(I_avg); %// Just in case
for i=1:m
for j=1:n
pixels = squeeze(I(i,j,:)); %// Add this statement and squeeze
angles(i,j) = atan2(norm(pixels,I_avg)),dot(pixels,I_avg)); %// Change
end
end
Minor note
MATLAB has a built-in function called angle that determines the angle from the origin to a complex number in the complex plane. It is not recommended you call your variable angle as this will unintentionally shadow over the angle function, and any other code that you create from this point onwards may rely on that actual angle function, and you will get unintended results.
Another minor note
Using i and j as loop variables is not recommended. These letters are reserved for the complex number, and this can produce unintentional results. Take a look at this question and post by Shai here - Using i and j as variables in Matlab. As such, it is suggested you use other variable names instead.
As #rayryeng has successfully answered this question, I would like to turn my post into a more general one by sharing my experience in debugging in Matlab. I hope anyone who somehow managed to find this post get more or less thinking about the habits a good programmer should have.
The question goes like: "How would I do if I get errors?"
Here's an excellent article by Eric in which he lists the rule-of-thumbs when you encounter a bug and wish to get rid of it. It's originally been cited by Stackoverflow, and that's the reason I read it.
If you still get no clue / idea how you can play with your code, see how this person does:
Pin-point the buggy line
(The number should start with 0) Make sure before running a script, you clear out any previously stored variables, including the notorious i and j's (you should never see them in any workspace). If any one is needed for the buggy code to run, save('buggy.mat','importantvar') before clear and load('buggy.mat') after clear.
By doing so, you can isolate your buggy code from anything else, which could have bad influences. For example, in a previously called script, there is a line
double = [2,4,6]; % you should never name a variable `double`
and in the next script, you have
>> e = str2num('uint8(200)')
e =
200
>> double(e)
Index exceeds matrix dimensions.
>>
>> f = single(2.36)
f =
2.3600
>> double(f)
Subscript indices must either be real positive integers or
logicals.
>>
The reason is double is no longer an inbuild function, but a user-defined variable. Too bad to pick up a name carelessly!
....anyway, let's clear the workspace and get rid of double.
>> clear
Read the error message, thoroughly.
Now let's begin with OP's problem. The original code (trimmed) goes like this -
img = imread('peppers.png');
a = img(300,200,:);
b = img(200,300,:);
d = norm(cross(a,b));
.... hence the error
Undefined function 'norm' for input arguments of type 'uint8'.
Error in untitled (line 6)
d = norm(cross(a,b));
Most beginners are only interested in the first line of the error message, which by it alone usually doesn't provide any useful help, or only in the red color, which leads to the famous question "my code does not work!"
But think twice. You still have another 2 lines unread! Error in untitled (line 6) says I'm running a script named untitled and the (first) error lies in line 6, and the code in that line is d = norm(cross(a,b));.
Now, at least you know a little more about your code - "My code d = norm(cross(a,b)); doesn't work!"
Although most likely we may also vote this kind of question to get closed, it's still much much better than a simply "It does not work!".
Now we can pin-point the buggy line
try
% this line will raise an error
d = norm(cross(a,b));
catch err
disp(err.message)
end
Look into the functions
First, make sure the inner function cross works as expected -
>> cross(a,b)
ans(:,:,1) =
0
ans(:,:,2) =
255
ans(:,:,3) =
0
>>
Good. So now we can even narrow down the error to the outer norm.
One more thing to mention. You can always find Mathworks' documentation for any in-build function, by typing "matlab function", such as "matlab norm" in Google (or any other search engine) and clicking on the first result. If you prefer, you can also type in Matlab command window doc _function_ such as doc norm and read the doc in Matlab. It's of course a pleasure of us on Stackoverflow to give you the reference by doing the same thing, but it takes a longer time because a human is, in this aspect, always slower than a search engine.
The error reads Undefined function 'norm' for input arguments of type 'uint8'.. So the input for norm should not be uint8, unsigned 8-bit integer. But what should it be?
% why `norm` "does not work"?
% this line runs perfectly well
norm(cross([1,2,3], [4,5,6]))
% so what is working?
class([1,2,3]) % so `norm` works for `double`
One thing we can do now is convert a and b to double precision. Let's try it now.
% try fixing 'uint8' error
a2 = double(a);
b2 = double(b);
whos a b % now they are double, which `norm` should work for
try
% this line will raise an error
d = norm(cross(a2,b2));
catch err
disp(err.message)
end
Now the error becomes Input must be 2-D.. What's wrong with the input?
% what is "must be 2-D" error?
size(a2) % a2 is 3-D
disp(b2) % b2 is also 3-D
This gives output in command window
ans =
1 1 3
(:,:,1) =
255
(:,:,2) =
150
(:,:,3) =
0
In OP's problem, he/she is trying to calculate something about color difference (to the best of my knowledge) which involves the angle between two color vectors in RGB space. So the vectors are needed. With imread, each pixel of the image is stored as 3 elements in the matrix, first 2 dimension being its physical position, the 3 dimension being RGB channel components. Hence pixel(200,300) with color rgb[255,150,0] is stored by us in variable b wihch is a 3-D vector.
By understanding what we need and what Matlab can do, we can combine these two points into one. We need the norm of the cross product of a and b, while the useful information (the 3 component values) is stored in the 3rd dimension. Matlab can calculate the norm of the cross product of a vector with all its information in the 1st dimension. (Here, "dimension" refers to that of the Matlab variable; a vector with 3 elements in its 1st dimension is physically a 3-D vector).
After thinking twice, we are now able to debug our code - just put all 3 elements into the 1st dimension.
% so we want the 3 elements in the 3rd dimension become in the 1st dim
a3 = squeeze(a2);
b3 = reshape(b2,numel(b2),[]);
try
d = norm(cross(a3,b3));
catch err
disp(err.message)
end
d
Bonus: If by default Matlab treats a 3-D vector as a "1-D array", then most probably the cross function has not been working correctly. Let's make a check -
>> clear
>> a = [1,2,3]
a =
1 2 3
>> b=[4,5,6]
b =
4 5 6
>> cross(a,b)
ans =
-3 6 -3
>>
The result should be the same as the one we can get by calculating by hand.
Now if we put the components into the 3rd dimension of the variable -
>> clear
>> a(1,1,:)=[1,2,3]
a(:,:,1) =
1
a(:,:,2) =
2
a(:,:,3) =
3
>> b(1,1,:)=[4,5,6]
b(:,:,1) =
4
b(:,:,2) =
5
b(:,:,3) =
6
>> cross(a,b)
ans(:,:,1) =
-3
ans(:,:,2) =
6
ans(:,:,3) =
-3
>>
.... seems OK. cross also puts the result in the 3rd dimension. In fact, Mathworks' documentation says
If A and B are vectors, then they must have a length of 3.
If A and B are matrices or multidimensional arrays, then they must
have the same size. In this case, the cross function treats A and B as
collections of three-element vectors. The function calculates the
cross product of corresponding vectors along the first array dimension
whose size equals 3.
At last, one thing is always correct to anyone who wants to do something with programming - be cautious and prudent when writing your code.