Prism 4.0 : Overriding InitializeShell() Method - inversion-of-control

I've been going through the documentation for creating Prism applications and setting up the Shell seems to be split into 2 methods, CreateShell() and InitializeShell()
For CreateShell I simply have:
protected override DependencyObject CreateShell()
{
return ServiceLocator.Current.GetInstance<Shell>();
}
The documentation says that code is needed in the IntializeShell() method to ensure it is ready to be displayed. The following is given as an example:
protected override void InitializeShell()
{
Application.Current.MainWindow = (Window)this.Shell;
Application.Current.MainWindow.Show();
}
I have noticed however that if I omit the first line and just call the Show() method it seems to work (MainWindow already appears to have Shell assigned to it). Can you tell me why this is the case, and why we still need to explicity set the MainWindow property here?
Also as I did not specifically register Shell to an interface within the container, how is it able to resolve Shell in CreateShell()?

Question 1: Why does just calling Show() seem to work and why is Application.Current.MainWindow seem to be populated?
There are a few things you should check here. In a typical WPF application, the type for the main window can be specified in the App.xaml. If it is specified, WPF will instantiate one of those for you. This is not desirable because WPF won't use your container to instantiate your shell and any dependencies won't be resolved.
When you run that first line of code in InitializeShell, you'd be replacing the WPF-instantiated Shell object with the one you manually instantiated.
I looked at the code for the MEF and Unity bootstrappers and I don't see anywhere that MainWindow is being set, but I don't know if you might have customized the base bootstrappers, so that's something else to look for.
Show() works because you are simply showing the window you instantiated and the WPF-instantiated one isn't shown. This is my theory, but without seeing your code, it'd be tough to say for sure.
Question 2: How can Unity resolve something that hasn't been registered?
Unity can always resolve a concrete type, regardless of registration. It cannot resolve non-concrete classes that haven't been mapped to a concrete type. This is why Resolve<Shell> works, but Resolve<IMyInterface> doesn't unless you register a type.

Related

Is it possible to implement a module that is not a WPF module (a standard class library, no screens)?

I am developing a modular WPF application with Prism in .Net Core 5.0 (using MVVM, DryIoc) and I would like to have a module that is not a WPF module, i.e., a module with functionality that can be used by any other module. I don't want any project reference, because I want to keep the loosely coupled idea of the modules.
My first question is: is it conceptually correct? Or is it mandatory that a module has a screen? I guess it should be ok.
The second and more important (for me) is, what would be the best way to create the instance?
This is the project (I know I should review the names in this project):
HotfixSearcher is the main class, the one I need to get instantiated. In this class, for example, I subscribe to some events.
And this is the class that implements the IModule interface (the module class):
namespace SearchHotfix.Library
{
public class HotfixSearcherModule : IModule
{
public HotfixSearcherModule()
{
}
public void OnInitialized(IContainerProvider containerProvider)
{
//Create Searcher instance
var searcher = containerProvider.Resolve<IHotfixSearcher>();
}
public void RegisterTypes(IContainerRegistry containerRegistry)
{
containerRegistry.RegisterSingleton<IHotfixSearcher, HotfixSearcher>();
}
}
}
That is the only way I found to get the class instantiated, but I am not a hundred per cent comfortable with creating an instance that is not used, I think it does not make much sense.
For modules that have screens, the instances get created when navigating to them using the RequestNavigate method:
_regionManager.RequestNavigate(RegionNames.ContentRegion, "ContentView");
But since this is only a library with no screens, I can't find any other way to get this instantiated.
According to Prism documentation, subscribing to an event shoud be enough but I tried doing that from within my main class HotfixSearcher but it does not work (breakpoints on constructor or on the event handler of the event to which I subscribe are never hit).
When I do this way, instead, the instance is created, I hit the constructor breakpoint, and obviously the instance is subscribed to the event since it is done in the constructor.
To sum up, is there a way to get rid of that var searcher = containerProvider.Resolve<IHotfixSearcher>(); and a better way to achieve this?
Thanks in advance!
Or is it mandatory that a module has a screen?
No, of course not, modules have nothing to do with views or view models. They are just a set of registrations with the container.
what would be the best way to create the instance?
Let the container do the work. Normally, you have (at least) one assembly that only contains public interfaces (and the associated enums), but no modules. You reference that from the module and register the module's implementations of the relevant interfaces withing the module's Initialize method. Some other module (or the main app) can then have classes that get the interfaces as constructor parameters, and the container will resolve (i.e. create) the concrete types registered in the module, although they are internal or even private and completely unknown outside the module.
This is as loose a coupling as it gets if you don't want to sacrifice strong typing.
is there a way to get rid of that var searcher = containerProvider.Resolve<IHotfixSearcher>(); and a better way to achieve this?
You can skip the var searcher = part :-) But if the HotfixSearcher is never injected anywhere, it won't be created unless you do it yourself. OnInitialized is the perfect spot for this, because it runs after all modules had their chance to RegisterTypes so all dependencies should be registered.
If HotfixSearcher is not meant to be injected, you can also drop IHotfixSearcher and resolve HotfixSearcher directly:
public void OnInitialized(IContainerProvider containerProvider)
{
containerProvider.Resolve<HotfixSearcher>();
}
I am not a hundred per cent comfortable with creating an instance that is not used, I think it does not make much sense.
It is used, I suppose, although not through calling one of its methods. It's used by sending it an event. That's just fine. Think of it like Task.Run - it's fine for the task to exist in seeming isolation, too.

UE4 UUserWidget is always changed after restarting UE4 or compile at blueprint editor

MyHUD.h
UCLASS()
class FPS_API AMyHUD : public AHUD
{
GENERATED_BODY()
UPROPERTY(EditDefaultsOnly, Category = Gameplay)
class UUserWidget* DefaultWidget;
...
}
I make Blueprint BP_MyHUD extends MyHUD and Widget Blueprint. The problem is, the DefaultWidget in BP_MyHUD is set None after i restart UE4 program or compile using button in toolbar at Blueprint editor. How can i fix the value of DefaultWidget in BP_MyHUD?
By default variables are set to "Private" and thus can't be modified in derived classes.
Try putting this UPROPERTY after you say public: (you could also use protected:)
UCLASS()
class FPS_API AMyHUD : public AHUD
{
GENERATED_BODY()
public:
UPROPERTY(EditDefaultsOnly, Category = Gameplay)
class UUserWidget* DefaultWidget;
...
}
Also I am unsure of the EditDefaultsOnly specifier when it comes to blueprints. My understanding was without
BlueprintReadWrite
You could not edit the variables in blueprints. But if you've been using this with success with other variables it is likely not the problem.
A bit late to the party, but here's the answer:
It's not possible.
Non-BindWidget pointers with EditDefaultsOnly indeed generate a selector in the Details panel, but this selector is not meant to select a widget inside our component's archetype. It's meant to select a widget outside an instance of our component (it also need to be public and maybe a BlueprintReadWrite too). In this case, the value you put in the selector indeed stay across builds.
Sadly, this error-inducing selector appearing anyway means that two things aren't quite working properly around this behaviour :
At the moment UE clears the selector when you're building, it should really display a warning/error explaining why
You shouldn't really be able to put EditAnywhere/EditDefaultsOnly on a non-BindWidget property, only a EditInstanceOnly... yet there's no warning/error either =(
(credits to #Bohdon Sayre from BenUI's discord community for helping me on this one)

Any way to trigger creation of a list of all classes in a hierarchy in Swift 4?

Edit: So far it looks like the answer to my question is, "You can't do that in Swift." I currently have a solution whereby the subclass names are listed in an array and I loop around and instantiate them to trigger the process I'm describing below. If this is the best that can be done, I'll switch it to a plist so that least it's externally defined. Another option would be to scan a directory and load all files found, then I would just need to make sure the compiler output for certain classes is put into that directory...
I'm looking for a way to do something that I've done in C++ a few times. Essentially, I want to build a series of concrete classes that implement a particular protocol, and I want to those classes to automatically register themselves such that I can obtain a list of all such classes. It's a classic Prototype pattern (see GoF book) with a twist.
Here's my approach in C++; perhaps you can give me some ideas for how to do this in Swift 4? (This code is grossly simplified, but it should demonstrate the technique.)
class Base {
private:
static set<Base*> allClasses;
Base(Base &); // never defined
protected:
Base() {
allClasses.put(this);
}
public:
static set<Base*> getAllClasses();
virtual Base* clone() = 0;
};
As you can see, every time a subclass is instantiated, a pointer to the object will be added to the static Base::allClasses by the base class constructor.
This means every class inherited from Base can follow a simple pattern and it will be registered in Base::allClasses. My application can then retrieve the list of registered objects and manipulate them as required (clone new ones, call getter/setter methods, etc).
class Derived: public Base {
private:
static Derived global; // force default constructor call
Derived() {
// initialize the properties...
}
Derived(Derived &d) {
// whatever is needed for cloning...
}
public:
virtual Derived* clone() {
return new Derived(this);
}
};
My main application can retrieve the list of objects and use it to create new objects of classes that it knows nothing about. The base class could have a getName() method that the application uses to populate a menu; now the menu automatically updates when new subclasses are created with no code changes anywhere else in the application. This is a very powerful pattern in terms of producing extensible, loosely coupled code...
I want to do something similar in Swift. However, it looks like Swift is similar to Java, in that it has some kind of runtime loader and the subclasses in this scheme (such as Derived) are not loaded because they're never referenced. And if they're not loaded, then the global variable never triggers the constructor call and the object isn't registered with the base class. Breakpoints in the subclass constructor shows that it's not being invoked.
Is there a way to do the above? My goal is to be able to add a new subclass and have the application automatically pick up the fact that the class exists without me having to edit a plist file or doing anything other than writing the code and building the app.
Thanks for reading this far — I'm sure this is a bit of a tricky question to comprehend (I've had difficulty in the past explaining it!).
I'm answering my own question; maybe it'll help someone else.
My goal is to auto initialize subclasses such that they can register with a central authority and allow the application to retrieve a list of all such classes. As I put in my edited question, above, there doesn't appear to be a way to do this in Swift. I have confirmed this now.
I've tried a bunch of different techniques and nothing seems to work. My goal was to be able to add a .swift file with a class in it and rebuild, and have everything automagically know about the new class. I will be doing this a little differently, though.
I now plan to put all subclasses that need to be initialized this way into a particular directory in my application bundle, then my AppDelegate (or similar class) will be responsible for invoking a method that scans the directory using the filenames as the class names, and instantiating each one, thus building the list of "registered" subclasses.
When I have this working, I'll come back and post the code here (or in a GitHub project and link to it).
Same boat. So far the solution I've found is to list classes manually, but not as an array of strings (which is error-prone). An a array of classes such as this does the job:
class AClass {
class var subclasses: [AClass.Type] {
return [BClass.self, CClass.self, DClass.self]
}
}
As a bonus, this approach allows me to handle trees of classes, simply by overriding subclasses in each subclass.

Limit instance count with Autofac?

I have a console app that will create an instance of a class and execute a method on it, and that's really all it does (but this method may do a lot of things). The class is determined at runtime based on command line args, and this is registered to Autofac so it can be correctly resolved, supplying class-specific constructor parameters extracted from the command line. All this works.
Now, I need to impose a system-wide limit to the number of instances per class that can be running at any one time. I will probably use a simple SQL database to keep track of number of allowed and running instances per class, and I have no problem with the SQL side of things.
But how do I actually impose this limit in a nice manner using Autofac?
I am thinking that I would have some "slot service" that would do something like this:
Try to reserve a new instance "slot".
If no more slots, log a message and terminate the process.
If slot successfully reserved, create instance and return it.
My idea is also to free the instance's slot in the class' Dispose method, preferably by using another method on the slot service.
How would I fit this into Autofac?
One possibility would be to register the class I want to instantiate with a lambda/delegate that does the above steps. But in that case, how do I "terminate"? Throw an exception? That would require some code to catch the exception and either log it or simply ignore it before terminating the process. I don't like it. I'd like the entire slot reservation stuff inside the delegate, lambda or service.
Another solution might be to do the slot reservation outside of Autofac, but that also seems somewhat messy.
I would prefer a solution where the "slot service" itself can be nicely unit tested, i.e. non-static and with an interface, and preferably resolved with Autofac.
I'm sure I'm missing something obvious here... Any suggestions?
This is my "best bet" so far:
static void Main(string[] args)
{
ReadCommandLine(args, out Type itemClass, out Type paramsClass, out Type paramsInterface, out object parameters);
BuildContainer(itemClass, paramsClass, paramsInterface, parameters);
IInstanceHandler ih = Container.Resolve<IInstanceHandler>();
if (ih.RegisterInstance(itemClass, out long instanceid))
{
try
{
Container.Resolve<IItem>().Execute();
}
finally
{
ih.UnregisterInstance(itemClass, instanceid);
}
}
}

Why can't I have static public fields in my managed beans?

I just started using the Netbeans 7.1 beta and it is calling out errors of a type which I have never seen before. Specifically:
A managed bean with a public field should not declare any scope other than #Dependent.
The fields it is complaining about are public static final. I can understand the restriction on non-static fields, but I can't think of a good reason this would not be allowed for a static field. Unfortunately I use a lot of them since I don't like having constants in my code.
I note that even though I get the red dot in the margin in the editor, the maven-driven build still works and GlassFish still runs my application the way I would expect.
So what is my denoument on this issue? Am I going to have to move my static fields elsewhere or is there another way of handling this?
Quoting the javax.enterprise.inject package javadocs:
If a managed bean has a public field, it must have scope #Dependent.
But I do agree wih #BalusC that if this compiles, Netbeans should report it as Warning (does it?).
Anyway, are those constants really part of the API? I mean, do you access they anywhere else but within their own classes? If not, reduce visibility to private. (If you just need to access the constants from the view you can also create accessors for the private constant). If yes, I would suggest you to move them somewhere else anyway.
Public fields (static or not) aren't proxyable - that's why they can only be dependent scoped. To work around this you obviously can access them through getter methods.