What happens when you boot the computer from a Unix perspective? - operating-system

Can anyone tell me how do I understand what happens when you boot up a Unix system? Like "BIOS" is loaded, it does a peripheral test etc until you get a shell?

For each unix it's different but for linux, from bios you go the bootloader (u-boot, lilo, grub..) then the kernel decompress itself, start himself and call init once booted.
This article explain well the process :
http://www.ibm.com/developerworks/linux/library/l-linuxboot/

It depends on the system, but in general, you want to start with a look at the init process: http://en.wikipedia.org/wiki/Init
I also recommend "Advanced Programming In the UNIX Environment" (I think in 3rd edition right now) which goes into much detail on this and many questions like it.

To make it easier, BIOS checks for bootable devices in order defined,
The first one that is found, First sector is copied to the memory.
The code at the memory position 0800 hex is then set to the Program Counter register and execution is delivered to the bootable media.

Related

List the four steps that are necessary to run a program on a completely dedicated machine—a computer that is running only that program

In my OS class, we use a text book "Operating System Concepts" by Silberschatz.
I ran into this question and answer in practice exercise and wanted to know further explanation.
Q. List the four steps that are necessary to run a program on a completely dedicated machine—a computer that is running only that program.
A.
1. Reserve machine time
2. Manually load program into memory
3. Load starting address and begin execution
4. Monitor and control execution of program from console
Actually, I don't understand the first step, "Reserve machine time". Could you explain what each step means here?
Thank you in advance.
If the computer can run only a single program, but the computer is shared between multiple people, then you will have to agree on a time that you get to use the computer to run your program. This was common up through the 1960s. It is still common in some contexts, such as very expensive super-computers. Time-sharing became popular during the 1970s, enabling multiple people to appear to share a computer at the same time, when in fact the computer quickly switched from one person's program to another.
In my opinion teaching about old batch systems in today's OS classes is not very helpful. You should use some text which is more relevant to contemporary OS design such as the Minix Book
Apart from that if you really want to learn about old systems then wikipedia has pretty good explanation.
Early computers were capable of running only one program at a time.
Each user had sole control of the machine for a scheduled period of
time. They would arrive at the computer with program and data, often
on punched paper cards and magnetic or paper tape, and would load
their program, run and debug it, and carry off their output when done

OS development tools: advice needed

So I got a new computer for Christmas and it came with Windows 8 pre-installed. Now I've had MORE than enough trouble getting it to run both Linux Ubuntu and W8 on the same drive. Having 2 operating systems of a single hard drive requires that the drive be partitioned so that 2 OS's do not conflict with each other. Now there is a program called Mini Partition Tool Wizard which runs inside Windows 8(and there is a similar program for Linux called gparted) which allows you to created and resize hard disk partitions so long as you don't overwrite the operating system that you're currently using.
To make a long story short: I am wanting to write my very own mini operating system that is to be used exclusively for boot control and hard disk management. That is, once I get it written, debugged, and compiled into executable code I will put it on a USB memory stick that I can boot from in the BIOS menu and then directly set up hard drive partitions and even format my hard drive if necessary. I'm quite astonished that BIOS doesn't have the user options of doing it yourself.
So my question is: Can I do this exclusively using the tools of C/C++? Or do I need to have inline assembly code? Or perhaps write an assembly code module that is used in a C++ program. Pretty sure that Mini Partition Tool Wizard is not open source(neither is Windows). Never written and OS before so I'm a n00b to this but willing and able to take the time to learn how it's done.
Can I do this exclusively using the tools of C/C++? Or do I need to have inline assembly code?
You will need some assembly and not the inline kind. Your compiled C/C++ code expects a number things to be set up and configured already (e.g. the 32-bit protected mode of the CPU, the stack, values of the various CPU registers, device drivers, interrupts, the C/C++ memory manager, etc), while the BIOS simply loads one 512-byte-long sector from a disk and transfers control to it, without setting up anything, with the CPU still being in the 16-bit mode.
So, you'd need to write some assembly code to:
load more stuff from the disk, you don't suppose everything will fit into 512 bytes, do you?
switch the CPU into the 32-bit protected mode
reconfigure the interrupt controller so the interrupts do not map onto the same interrupt vectors as protected mode exceptions (well, this tiny part can be done in C)
write exception handlers
write interrupt handlers for the basic stuff like the timer and the keyboard (if designed carefully, you may only need to do a small part of this in assembly and the rest can be done in C)
And then you'll need to write 32-bit I/O device drivers for everything else since after the switch you can't use the BIOS's. Alternatively, you could implement a virtual 8086 machine (using the virtual 8086 mode) in order to delegate this stuff back to the BIOS and that's not a trivial thing either. Most of this can be done in C, but some knowledge or use of assembly code will still be necessary.
You'll also need to reimplement some parts of the standard library of C (C++), so malloc()/new, putch(), getchar(), fopen(), time() and so on use your low-level APIs instead of Windows' or Linux'.
Prepare to burn a couple of years to get from nothing and lack of knowledge and experience to something working.
And yeah, you can indeed start learning stuff at osdev.org. There are some useful newsgroups as well: comp.lang.asm.x86 and alt.os.development.

Wrapping a kernel-driver in userspace: is it real? Is it possible?

I have written a Loadable Kernel Module (LKM) which wraps the audio-driver under /dev/snd/pcmC0D0p .
Therefore I moved pcmC0D0p to pcmC0D0p_bak, renamed my driver to pcmC0D0p and passthru every command like MMAP, IOCTL etc. (but doing other things before forwarding the MMAPed-data).
This is bad, I know (but it's my first step in linux-programing) but it worked.
Today, I read in an article about Userspace device drivers.
Now I'm wondering: should this really be possible? Write a "driver" with userspace-code, implemented methods like MMAP & IOCTL and put it in place of a normal kernel-device (/dev/snd/pcmC0D0p)?
It isn't, isn't it?
IF it's possible, has anyone a simple example, a reference? Anything is really welcome!
It is possible to write userspace device drivers, but not quite in the way you're thinking.
An example is the uio_pci_generic module, this can be programmed (via /proc) with the ID of a PCI device and will make the device's memory available to you via mmap. You can receive interrupts by blocking on a read call.
Note how this does not allow you to pretend to be a driver, only to perform driver-like actions (communicating directly with a hardware device, receiving interrupts, etc). No userspace program can ever service a call to ioctl, or expose itself as a character device, without the help of some kernel module.

How do I configure an ATA hard disk to start generating interrupts?

RESOLVED
After much confusion and frustration, I finally got my hard disk to interrupt. :D It basically came down to the fact that I kept reading the status register instead of the alternate status register. A few other things were messed up to boot, but the point is my hard disk driver is finally starting to take shape. Now, for others I will leave the original post.
P.S. For further clarification, I didn't need to issue any sort of reset command. All I did was the following:
Select the device (didn't want to kill the Solaris OS on the other disk)
clear the nIEN bit in the DEVICE CONTROL register
issue an IDENTIFY DEVICE command***
Actually, I am not sure if the IDENTIFY DEVICE command is need because I left the lab happy before I could test the code without issuing the command. However, the main point is that I needed to be sure to read the alternate status register and have the nIEN bit cleared without the need for a reset. The BIOS apparently takes care of most stuff.
I am currently trying to write a disk driver for a hobby OS being developed at my school. I currently have routines to read/write data in the PCI configuration space and assembly routines to do port IO with the various registers defined by ATA/ATAPI-7. Now, my question is, specifically how will I get an IDE hard drive to start generating interrupts? I have been looking through all this documentation and is hasn't become clear to me what I am doing wrong.
Can someone explain exactly what causes an IDE hard drive to start generating interrupts? I already have an interrupts service routine ready to test, but am having difficulty getting the interrupts in the first place. Can this be accomplished through the ATA SOFT RESET?
Thanks!
UPDATE: Ok, I was able to get the secondary channel, an ATAPI CDROM to generate interrupts by setting the SRST bit in the DEVICE CONTROL register for a soft reset. This does not work for the hard disk on the primary channel. What I have noticed so far is that when I set the SRST bit for the HDD, it sets the BSY bit and leaves it set. From there I don't know what to do.
This reference should help you a fair bit: Kenos description of programming ATA/ATAPI.
The basic mechanism to enable interrupts is to clear nIEN in the DCR (Device Control Register):
nIEN: Drive Interrupt Enable bit. The enable bit for the drive interrupt to the host. When nIEN is 0 or the drive is selected the host interrupt signal INTRQ is enabled through a tri state buffer to the host. When nIEN is 1 or the drive is not selected the host interrupt signal INTRQ is in a high impedance state regardless of the presence or absence of a pending interrupt.
This www.ata-atapi.com is a good jumping-off point to find way more info about ATA/PATA/SATA/ATAPI than you want to know... Note that the official ATA-6/7/etc specs cost $$ from T13, though you can download current drafts of ATA-8 from them.
This link describes a few of the many ways ATA devices vary from the specs. (I used to write SCSI and ATA/ATAPI drivers for Commodore/Amiga, way back when, as well as help with qualifying drives - or more accurately, figuring out what idiocies drive makers had done.)
if this is just a hobby OS, why not use the BIOS interrupt (int 13h)? admittedly not as fast as direct disk access but safer for your hard drive (I've put a read head through a plate before messing with disk I/O).

How are Operating Systems "Made"?

Creating an OS seems like a massive project. How would anyone even get started?
For example, when I pop Ubuntu into my drive, how can my computer just run it?
(This, I guess, is what I'd really like to know.)
Or, looking at it from another angle, what is the least amount of bytes that could be on a disk and still be "run" as an OS?
(I'm sorry if this is vague. I just have no idea about this subject, so I can't be very specific. I pretend to know a fair amount about how computers work, but I'm utterly clueless about this subject.)
Well, the answer lives in books: Modern Operating Systems - Andrew S. Tanenbaum is a very good one. The cover illustration below.
The simplest yet complete operating system kernel, suitable for learning or just curiosity, is Minix.
Here you can browse the source code.
(source: cs.vu.nl)
Operating Systems is a huge topic, the best thing I can recommend you if you want to go really in depth on how a operating systems are designed and construced it's a good book:
Operating System Concepts
If you are truly curious I would direct you to Linux from Scratch as a good place to learn the complete ins and outs of an operating system and how all the pieces fit together. If that is more information than you are looking for then this Wikipedia article on operating systems might be a good place to start.
A PC knows to look at a specific sector of the disk for the startup instructions. These instructions will then tell the processor that on given processor interrupts, specific code is to be called. For example, on a periodic tick, call the scheduler code. When I get something from a device, call the device driver code.
Now how does an OS set up everything with the system? Well hardware's have API's also. They are written with the Systems programmer in mind.
I've seen a lot of bare-bones OS's and this is really the absolute core. There are many embedded home-grown OS's that that's all they do and nothing else.
Additional features, such as requiring applications to ask the operating system for memory, or requiring special privileges for certain actions, or even processes and threads themselves are really optional though implemented on most PC architectures.
The operating system is, simply, what empowers your software to manage the hardware. Clearly some OSes are more sophisticated than others.
At its very core, a computer starts executing at a fixed address, meaning that when the computer starts up, it sets the program counter to a pre-defined address, and just starts executing machine code.
In most computers, this "bootstrapping" process immediately initializes known peripherals (like, say, a disk drive). Once initialized, the bootstrap process will use some predefined sequence to leverage those peripherals. Using the disk driver again, the process might read code from the first sector of the hard drive, place it in a know space within RAM, and then jump to that address.
These predefined sequence (the start of the CPU, the loading of the disk) allows the programmers to star adding more and more code at the early parts of the CPU startup, which over time can, eventually, start up very sophisticated programs.
In the modern world, with sophisticated peripherals, advanced CPU architectures, and vast, vast resources (GBs or RAM, TB of Disk, and very fast CPUs), the operating system can support quite powerful abstractions for the developer (multiple processes, virtual memory, loadable drivers, etc.).
But for a simple system, with constrained resourced, you don't really need a whole lot for an "OS".
As a simple example, many small controller computers have very small "OS"es, and some may simply be considered a "monitor", offering little more than easy access to a serial port (or a terminal, or LCD display). Certainly, there's not a lot of needs for a large OS in these conditions.
But also consider something like a classic Forth system. Here, you have a system with an "OS", that gives you disk I/O, console I/O, memory management, plus the actual programming language as well as an assembler, and this fits in less than 8K of memory on an 8-Bit machine.
or the old days of CP/M with its BIOS and BDOS.
CP/M is a good example of where a simple OS works well as a abstraction layer to allow portable programs to run on a vast array of hardware, but even then the system took less than 8K of RAM to start up and run.
A far cry from the MBs of memory used by modern OSes. But, to be fair, we HAVE MBs of memory, and our lives are MUCH MUCH simpler (mostly), and far more functional, because of it.
Writing an OS is fun because it's interesting to make the HARDWARE print "Hello World" shoving data 1 byte at a time out some obscure I/O port, or stuffing it in to some magic memory address.
Get a x86 emulator and party down getting a boot sector to say your name. It's a giggly treat.
Basically... your computer can just run the disk because:
The BIOS includes that disk device in the boot order.
At boot, the BIOS scans all bootable devices in order, like the floppy drive, the harddrive, and the CD ROM. Each device accesses its media and checks a hard-coded location (typically a sector, on a disk or cd device) for a fingerprint that identifies the media, and lists the location to jump to on the disk (or media) where instructions start. The BIOS tells the device to move its head (or whatever) to the specified location on the media, and read a big chunk of instructions. The BIOS hands those instructions off to the CPU.
The CPU executes these instructions. In your case, these instructions are going to start up the Ubuntu OS. They could just as well be instructions to halt, or to add 10+20, etc.
Typically, an OS will start off by taking a large chunk of memory (again, directly from the CPU, since library commands like 'GlobalAlloc' etc aren't available as they're provided by the yet-to-be-loaded-OS) and starts creating structures for the OS itself.
An OS provides a bunch of 'features' for applications: memory management, file system, input/output, task scheduling, networking, graphics management, access to printers, and so on. That's what it's doing before you 'get control' : creating/starting all the services so later applications can run together, not stomp on each other's memory, and have a nice API to the OS provided services.
Each 'feature' provide by the OS is a large topic. An OS provides them all so applications just have to worry about calling the right OS library, and the OS manages situations like if two programs try to print at the same time.
For instance, without the OS, each application would have to deal with a situation where another program is trying to print, and 'do something' like print anyway, or cancel the other job, etc. Instead, only the OS has to deal with it, applications just say to the OS 'print this stuff' and the OS ensure one app prints, and all other apps just have to wait until the first one finishes or the user cancels it.
The least amount of bytes to be an OS doesn't really make sense, as an "OS" could imply many, or very few, features. If all you wanted was to execute a program from a CD, that would be very very few bytes. However, that's not an OS. An OS's job is to provide services (I've been calling them features) to allow lots of other programs to run, and to manage access to those services for the programs. That's hard, and the more shared resources you add (networks, and wifi, and CD burners, and joysticks, and iSight video, and dual monitors, etc, etc) the harder it gets.
http://en.wikipedia.org/wiki/Linux_startup_process you are probably looking for this.
http://en.wikipedia.org/wiki/Windows_NT_startup_process or this.
One of the most recent operating system projects I've seen that has a serious backing has been a MS Research project called Singularity, which is written entirely in C#.NET from scratch.
To get an idea how much work it takes, there are 2 core devs but they have up to a dozen interns at any given time, and it still took them two years before they could even get the OS to a point where it would bootup and display BMP images (it's how they use to do their presentations). It took much more work before they could even get to a point where there was a command line (like about 4yrs).
Basically, there are many arguments about what an OS actually is. If you got everyone agreed on what an OS specifically is (is it just the kernel? everything that runs in kernel mode? is the shell part of OS? is X part of OS? is Web browser a part of OS?), your question is answered! Otherwise, there's no specific answer to your question.
Oh, this is a fun one. I've done the whole thing at one point or another, and been there through a large part of the evolution.
In general, you start writing a new OS by starting small. The simplest thing is a bootstrap loader, which is a small chunk of code that pulls a chunk of code in and runs it. Once upon a time, with the Nova or PDP computers, you could enter the bootstrap loader through the front panel: you entered the instructions hex number by hex number. The boot loader than reads some medium into memory, and set the program counter to the start address of that code.
That chunk of code usualy loads something else, but it doesn't have to: you can write a program that's meant to run on the bare metal. That sort of program does something useful on its own.
A real operating system is bigger, and has more pieces. you need to load programs, put them in memory, and run them; you need to provide code to run the IO devices; as it gets bigger, you need to manage memory.
If you want to really learn how it works, find Doug Comer's Xinu books, and Andy Tannenbaum's newest operating system book on Minix.
You might want to get the book The Design and Implementation of the FreeBSD Operating system for a very detailed answer. You can get it from Amazon or this link to FreeBSD.org's site looks like the book as I remember it: link text
Try How Computers Boot Up, The Kernel Boot Process and other related articles from the same blog for a short overview of what a computer does when it boots.
What a computer does when its start is heavily dependent (maybe obvious?) on the CPU design and other "low-level stuff"; therefore it's kind of difficult to anticipate what your computer does when it boots.
I can't believe this hasn't been mentioned... but a classic book for an overview of operating system design is Operating Systems - Design and Implementation written by Andrew S Tanenbaum, the creator of MINIX. A lot of the examples in the book are geared directly towards MINIX as well.
If you would like to learn a bit more, OS Dev is a great place to start. Especially the wiki. This site is full of information as well as developers who write personal operating systems for a small project/hobby. It's a great learning resource too, as there are many people in the same boat as you on OSDev who want to learn what goes into an OS. You might end up trying it yourself eventually, too!
the operating system (OS) is the layer of software that controls the hardware. The simpler the hardware, the simpler the OS, and vice-versa ;-)
if the early days of microcomputers, you could fit the OS into a 16K ROM and hard-wire the motherboard to start executing machine code instructions at the start of the ROM address space. This 'bootstrap' process would then load the code for the drivers for the other devices like the keyboard, monitor, floppy drive, etc., and within a few seconds your machine would be booted and ready for use.
Nowadays... same principle, but a lot more and more complex hardware ;-)
Well you have something linking the startup of the chip to a "bios", then to a OS, that is usually a very complicated task done by a lot of services of code.
If you REALY want to know more about this i would recomend reading a book... about microcontrllers, especially one where you create a small OS in c for a 8051 or the like.. or learn some x86 assembly and create a very small "bootloader OS".
You might want to check out this question.
An OS is a program, just like any other application you write. The main purpose of this program is that it allows you to run other programs. Modern OSes take advantage of modern hardware to ensure that programs do not clash with one another.
If you are interested in writing your own OS, check out my own question here:
How to get started in operating system development
You ask how few bytes could you put on disk and still run as an OS? The answer depends on what you expect of your OS, but the smallest useful OS that I know of fits in 1.7 Megabytes. It is Tom's Root Boot disk and it is a very nice if small OS with "rescue" applications that fits on one floppy disk. Back in the days when every machine had a floppy drive and not every machine had a CD-ROM drive, I used to use it frequently.
My take on it is that it is like your own life. AT first, you know very little - just enough to get along. This is similar to what the BIOS provides - it knows enough to look for a disk drive and read information off of it. Then you learn a little bit more when you go to elementary school. This is like the boot sector being read into memory and being given control. Then you go to high school, which is like the OS kernel loading. Then you go to college (drivers and other applications.) Of course, this is the point at which you are liable to CRASH. HE HE.
Bottom line is that layers of more and more capability are slowly loaded on. There's nothing magic about an OS.
Reading through here will give you an idea of what it took to create Linux
https://netfiles.uiuc.edu/rhasan/linux/
Another really small operating system that fits on one disk is QNX (when I last looked at it a long time ago, the whole OS, with GUI interface, web browser, disk access and a built in web server, fit on one floppy drive).
I haven't heard too much about it since then, but it is a real time OS so it is designed to be very fast.
Actually, some people visit a 4-year college to get a rough idea on this..
At its core, OS is extremely simple. Here's the beginner's guide to WHAT successful OS are made to do:
1. Manage CPU using scheduler which decides which process (program's running instance) to be scheduled.
2. Manage memory to decide which all processes use it for storing instruction(code) and data(variables).
3. Manage I/O interfaces such as disk drives, alarms, keyboard, mouse.
Now, above 3 requirements give rise to need for processes to communicate(and not fight!), to interact with outside world, help applications to do what they want to do.
To dig deeper into HOW it does that, read Dinosaur book :)
So, you can make OS as small as you want to as long as you manage to handle all hardware resources.
When you bootup, BIOS tells CPU to start reading bootloader(which loads first function of OS which resides at fixed address in memory--something like main() of small C program). Then this creates functions and processes and threads and starts the big bang!
Firstly, reading reading and reading about, what is OS; then what are the uses/ Types/ nature / objective/ needs/ of the different OS's.
Some of the links are as follows; newbie will enjoy these links:
Modern OS - this gives Idea about general OS.
Start of OS - this gives basics of what it really takes to MAKE OS, how we can make it and how one can modify a present open source code of OS by himself.
Wiki OS - Gives idea about the different Os's used in different fields and uses of it(Objects / features of OS.)
Let's see in general what OS contains (Not the sophisticatedLinux or Windows)
OS need a CPU and to dump a code in it you need a bootloader.
OS must be have the objectives to fullfill and those objectives mustbe defined in a wrapper which is called Kernel
Inside you could have scheduling time and ISR's (Depends on the objective and OS you need to make)
OS development is complicated. There are some websites like osdev or lowlevel.eu (german) dedicated to the topic. There are also some books, that others have mentioned already.
I can't help but also reference the "Write your own operating system" video series on youtube, as I'm the one who made it :-)
See https://www.youtube.com/playlist?list=PLHh55M_Kq4OApWScZyPl5HhgsTJS9MZ6M