I want to solve leetcode 172nd question using dart. Take the factorial of a given number and find how many zeros there are at the end.
I done until now
void main() {
print(factorial(5));
}
factorial(int input) {
int factorial = 1;
var answer = 0;
for (int i = 1; i <= input; i++) {
factorial *= i;
}
while (factorial > 10 && factorial.toString().split('').last == "0") {
factorial = (factorial / 10)
answer++;
}
return answer;
}
but when i divide factorial by 10 it not allowed. and if assing at the begining like
double factorial=1;
this time the number is 120.0 and then zero is more. Can anyone help on this, thanks
You can use method for double to int;
double a = 8.5;
print(a.toInt()) // 8
Answer:
while (factorial > 10 && factorial.toString().split('').last == "0") {
factorial = (factorial / 10).toInt(); // Add toInt()
answer++;
}
To convert a double to int, just use:
double x = 1.256;
print(x.toInt()); //this will print 1
I am not sure what you are asking in this question other than this.
Check the accepted answer to this Question: How to do Integer division in Dart?
Integer division in Dart has its own operator: ~/ as in
print(16 ~/ 3);
I have two variable bit-shifting code fragments that I want to SSE-vectorize by some means:
1) a = 1 << b (where b = 0..7 exactly), i.e. 0/1/2/3/4/5/6/7 -> 1/2/4/8/16/32/64/128/256
2) a = 1 << (8 * b) (where b = 0..7 exactly), i.e. 0/1/2/3/4/5/6/7 -> 1/0x100/0x10000/etc
OK, I know that AMD's XOP VPSHLQ would do this, as would AVX2's VPSHLQ. But my challenge here is whether this can be achieved on 'normal' (i.e. up to SSE4.2) SSE.
So, is there some funky SSE-family opcode sequence that will achieve the effect of either of these code fragments? These only need yield the listed output values for the specific input values (0-7).
Update: here's my attempt at 1), based on Peter Cordes' suggestion of using the floating point exponent to do simple variable bitshifting:
#include <stdint.h>
typedef union
{
int32_t i;
float f;
} uSpec;
void do_pow2(uint64_t *in_array, uint64_t *out_array, int num_loops)
{
uSpec u;
for (int i=0; i<num_loops; i++)
{
int32_t x = *(int32_t *)&in_array[i];
u.i = (127 + x) << 23;
int32_t r = (int32_t) u.f;
out_array[i] = r;
}
}
I am working on some fairly simple linear attenuation and absorption calculations and from high school math I seem to remember that there is an approximation of:
1-exp(-mu*t)
When
mu*t << 1
Does this approximation exist? I thought it was a taylor series expansion but could not convince myself after looking through old math textbooks.
Any help or direction is greatly appreciated.
mu*t plus O((mu*t)^2)
To see why, try rewriting this as f(u) = 1-exp(-u), and taking a Taylor series expansion at the point u=0.
If you are using C++11, for example, it has this function as part of the standard library: expm1.
In your case, you would call it as -expm1(-mu*t).
Otherwise, you can derive the Maclaurin series for expm1 easily from the Maclaurin series for exp(x) by simply dropping the first 1. One implementation is given below in expm1_maclaurin.
Comparing this with the built-in expm1:
#include <cmath>
#include <iostream>
#include <limits>
using namespace std;
double expm1_maclaurin( double x )
{
const double order = 10;
double retval = 1.0;
for( int i = order ; 1 < i ; --i ) retval = 1.0 + x*retval/i;
return x*retval;
}
int main()
{
cout.precision(numeric_limits<double>::digits10);
for( int i = 0 ; i <= 32 ; ++i )
{
double x = i < 0 ? 1.0 * (1u<<-i) : i < 32 ? 1.0 / (1u<<i) : 0;
cout << "x=" << x << ' '
<< expm1(x) << ' '
<< expm1_maclaurin(x) << ' '
<< ( expm1(x) == expm1_maclaurin(x) ) << endl;
}
return 0;
}
Output:
x=1 1.71828182845905 1.71828180114638 0
x=0.5 0.648721270700128 0.648721270687366 0
x=0.25 0.284025416687742 0.284025416687735 0
x=0.125 0.133148453066826 0.133148453066826 1
x=0.0625 0.0644944589178594 0.0644944589178594 1
x=0.03125 0.0317434074991027 0.0317434074991027 1
...
For all positive x <= 1/8 the result is equal to full double precision of expm1.
I am developing a financial app and require IRR (in-built functionality of Excel) calculation and found such great tutorials in C here and such answer in C# here.
I implemented code of the C language above, but it gives a perfect result when IRR is in positive. It is not returning a negative value when it should be. Whereas in Excel =IRR(values,guessrate) returns negative IRR as well for some values.
I have referred to code in above C# link too, and it seems that it follows good procedures and returns errors and also hope that it returns negative IRR too, the same as Excel. But I am not familiar with C#, so I am not able to implement the same code in Objective-C or C.
I am writing C code from the above link which I have implemented for helping you guys.
#define LOW_RATE 0.01
#define HIGH_RATE 0.5
#define MAX_ITERATION 1000
#define PRECISION_REQ 0.00000001
double computeIRR(double cf[], int numOfFlows)
{
int i = 0, j = 0;
double m = 0.0;
double old = 0.00;
double new = 0.00;
double oldguessRate = LOW_RATE;
double newguessRate = LOW_RATE;
double guessRate = LOW_RATE;
double lowGuessRate = LOW_RATE;
double highGuessRate = HIGH_RATE;
double npv = 0.0;
double denom = 0.0;
for (i=0; i<MAX_ITERATION; i++)
{
npv = 0.00;
for (j=0; j<numOfFlows; j++)
{
denom = pow((1 + guessRate),j);
npv = npv + (cf[j]/denom);
}
/* Stop checking once the required precision is achieved */
if ((npv > 0) && (npv < PRECISION_REQ))
break;
if (old == 0)
old = npv;
else
old = new;
new = npv;
if (i > 0)
{
if (old < new)
{
if (old < 0 && new < 0)
highGuessRate = newguessRate;
else
lowGuessRate = newguessRate;
}
else
{
if (old > 0 && new > 0)
lowGuessRate = newguessRate;
else
highGuessRate = newguessRate;
}
}
oldguessRate = guessRate;
guessRate = (lowGuessRate + highGuessRate) / 2;
newguessRate = guessRate;
}
return guessRate;
}
I have attached the result for some value which are different in Excel and the above C language code.
Values: Output of Excel: -33.5%
1 = -18.5, Output of C code: 0.010 or say (1.0%)
2 = -18.5,
3 = -18.5,
4 = -18.5,
5 = -18.5,
6 = 32.0
Guess rate: 0.1
Since low_rate and high_rate are both positive, you're not able to get a negative score. You have to change:
#define LOW_RATE 0.01
to, for example,
#define LOW_RATE -0.5
Imagine a std:vector, say, with 100 things on it (0 to 99) currently. You are treating it as a loop. So the 105th item is index 4; forward 7 from index 98 is 5.
You want to delete N items after index position P.
So, delete 5 items after index 50; easy.
Or 5 items after index 99: as you delete 0 five times, or 4 through 0, noting that position at 99 will be erased from existence.
Worst, 5 items after index 97 - you have to deal with both modes of deletion.
What's the elegant and solid approach?
Here's a boring routine I wrote
-(void)knotRemovalHelper:(NSMutableArray*)original
after:(NSInteger)nn howManyToDelete:(NSInteger)desired
{
#define ORCO ((NSInteger)[original count])
static NSInteger kount, howManyUntilLoop, howManyExtraAferLoop;
if ( ... our array is NOT a loop ... )
// trivial, if messy...
{
for ( kount = 1; kount<=desired; ++kount )
{
if ( (nn+1) >= ORCO )
return;
[original removeObjectAtIndex:( nn+1 )];
}
return;
}
else // our array is a loop
// messy, confusing and inelegant. how to improve?
// here we go...
{
howManyUntilLoop = (ORCO-1) - nn;
if ( howManyUntilLoop > desired )
{
for ( kount = 1; kount<=desired; ++kount )
[original removeObjectAtIndex:( nn+1 )];
return;
}
howManyExtraAferLoop = desired - howManyUntilLoop;
for ( kount = 1; kount<=howManyUntilLoop; ++kount )
[original removeObjectAtIndex:( nn+1 )];
for ( kount = 1; kount<=howManyExtraAferLoop; ++kount )
[original removeObjectAtIndex:0];
return;
}
#undef ORCO
}
Update!
InVariant's second answer leads to the following excellent solution. "starting with" is much better than "starting after". So the routine now uses "start with". Invariant's second answer leads to this very simple solution...
N times do if P < currentsize remove P else remove 0
-(void)removeLoopilyFrom:(NSMutableArray*)ra
startingWithThisOne:(NSInteger)removeThisOneFirst
howManyToDelete:(NSInteger)countToDelete
{
// exception if removeThisOneFirst > ra highestIndex
// exception if countToDelete is > ra size
// so easy thanks to Invariant:
for ( do this countToDelete times )
{
if ( removeThisOneFirst < [ra count] )
[ra removeObjectAtIndex:removeThisOneFirst];
else
[ra removeObjectAtIndex:0];
}
}
Update!
Toolbox has pointed out the excellent idea of working to a new array - super KISS.
Here's an idea off the top of my head.
First, generate an array of integers representing the indices to remove. So "remove 5 from index 97" would generate [97,98,99,0,1]. This can be done with the application of a simple modulus operator.
Then, sort this array descending giving [99,98,97,1,0] and then remove the entries in that order.
Should work in all cases.
This solution seems to work, and it copies all remaining elements in the vector only once (to their final destination).
Assume kNumElements, kStartIndex, and kNumToRemove are defined as const size_t values.
vector<int> my_vec(kNumElements);
for (size_t i = 0; i < my_vec.size(); ++i) {
my_vec[i] = i;
}
for (size_t i = 0, cur = 0; i < my_vec.size(); ++i) {
// What is the "distance" from the current index to the start, taking
// into account the wrapping behavior?
size_t distance = (i + kNumElements - kStartIndex) % kNumElements;
// If it's not one of the ones to remove, then we keep it by copying it
// into its proper place.
if (distance >= kNumToRemove) {
my_vec[cur++] = my_vec[i];
}
}
my_vec.resize(kNumElements - kNumToRemove);
There's nothing wrong with two loop solutions as long as they're readable and don't do anything redundant. I don't know Objective-C syntax, but here's the pseudocode approach I'd take:
endIdx = after + howManyToDelete
if (Len <= after + howManyToDelete) //will have a second loop
firstloop = Len - after; //handle end in the first loop, beginning in second
else
firstpass = howManyToDelete; //the first loop will get them all
for (kount = 0; kount < firstpass; kount++)
remove after+1
for ( ; kount < howManyToDelete; kount++) //if firstpass < howManyToDelete, clean up leftovers
remove 0
This solution doesn't use mod, does the limit calculation outside the loop, and touches the relevant samples once each. The second for loop won't execute if all the samples were handled in the first loop.
The common way to do this in DSP is with a circular buffer. This is just a fixed length buffer with two associated counters:
//make sure BUFSIZE is a power of 2 for quick mod trick
#define BUFSIZE 1024
int CircBuf[BUFSIZE];
int InCtr, OutCtr;
void PutData(int *Buf, int count) {
int srcCtr;
int destCtr = InCtr & (BUFSIZE - 1); // if BUFSIZE is a power of 2, equivalent to and faster than destCtr = InCtr % BUFSIZE
for (srcCtr = 0; (srcCtr < count) && (destCtr < BUFSIZE); srcCtr++, destCtr++)
CircBuf[destCtr] = Buf[srcCtr];
for (destCtr = 0; srcCtr < count; srcCtr++, destCtr++)
CircBuf[destCtr] = Buf[srcCtr];
InCtr += count;
}
void GetData(int *Buf, int count) {
int srcCtr = OutCtr & (BUFSIZE - 1);
int destCtr = 0;
for (destCtr = 0; (srcCtr < BUFSIZE) && (destCtr < count); srcCtr++, destCtr++)
Buf[destCtr] = CircBuf[srcCtr];
for (srcCtr = 0; srcCtr < count; srcCtr++, destCtr++)
Buf[destCtr] = CircBuf[srcCtr];
OutCtr += count;
}
int BufferOverflow() {
return ((InCtr - OutCtr) > BUFSIZE);
}
This is pretty lightweight, but effective. And aside from the ctr = BigCtr & (SIZE-1) stuff, I'd argue it's highly readable. The only reason for the & trick is in old DSP environments, mod was an expensive operation so for something that ran often, like every time a buffer was ready for processing, you'd find ways to remove stuff like that. And if you were doing FFT's, your buffers were probably a power of 2 anyway.
These days, of course, you have 1 GHz processors and magically resizing arrays. You kids get off my lawn.
Another method:
N times do {remove entry at index P mod max(ArraySize, P)}
Example:
N=5, P=97, ArraySize=100
1: max(100, 97)=100 so remove at 97%100 = 97
2: max(99, 97)=99 so remove at 97%99 = 97 // array size is now 99
3: max(98, 97)=98 so remove at 97%98 = 97
4: max(97, 97)=97 so remove at 97%97 = 0
5: max(96, 97)=97 so remove at 97%97 = 0
I don't program iphone for know, so I image std::vector, it's quite easy, simple and elegant enough:
#include <iostream>
using std::cout;
#include <vector>
using std::vector;
#include <cassert> //no need for using, assert is macro
template<typename T>
void eraseCircularVector(vector<T> & vec, size_t position, size_t count)
{
assert(count <= vec.size());
if (count > 0)
{
position %= vec.size(); //normalize position
size_t positionEnd = (position + count) % vec.size();
if (positionEnd < position)
{
vec.erase(vec.begin() + position, vec.end());
vec.erase(vec.begin(), vec.begin() + positionEnd);
}
else
vec.erase(vec.begin() + position, vec.begin() + positionEnd);
}
}
int main()
{
vector<int> values;
for (int i = 0; i < 10; ++i)
values.push_back(i);
cout << "Values: ";
for (vector<int>::const_iterator cit = values.begin(); cit != values.end(); cit++)
cout << *cit << ' ';
cout << '\n';
eraseCircularVector(values, 5, 1); //remains 9: 0,1,2,3,4,6,7,8,9
eraseCircularVector(values, 16, 5); //remains 4: 3,4,6,7
cout << "Values: ";
for (vector<int>::const_iterator cit = values.begin(); cit != values.end(); cit++)
cout << *cit << ' ';
cout << '\n';
return 0;
}
However, you might consider:
creating new loop_vector class, if you use this kind of functionality enough
using list if you perform many deletions (or few deletions (not from end, that's simple pop_back) but large array)
If your container (NSMutableArray or whatever) is not list, but vector (i.e. resizable array), you most definitely don't want to delete items one by one, but whole range (e.g. std::vector's erase(begin, end)!
Edit: reacting to comment, to fully realize what must be done by vector, if you erase element other than the last one: it must copy all values after that element (e.g. 1000 items in array, you erase first, 999x copying (moving) of item, that is very costly).
Example:
#include <iostream>
#include <vector>
#include <ctime>
using namespace std;
int main()
{
clock_t start, end;
vector<int> vec;
const int items = 64 * 1024;
cout << "using " << items << " items in vector\n";
for (size_t i = 0; i < items; ++i) vec.push_back(i);
start = clock();
while (!vec.empty()) vec.erase(vec.begin());
end = clock();
cout << "Inefficient method took: "
<< (end - start) * 1.0 / CLOCKS_PER_SEC << " ms\n";
for (size_t i = 0; i < items; ++i) vec.push_back(i);
start = clock();
vec.erase(vec.begin(), vec.end());
end = clock();
cout << "Efficient method took: "
<< (end - start) * 1.0 / CLOCKS_PER_SEC << " ms\n";
return 0;
}
Produces output:
using 65536 items in vector
Inefficient method took: 1.705 ms
Efficient method took: 0 ms
Note it's very easy to get inefficient, look e.g. have at http://www.cplusplus.com/reference/stl/vector/erase/