Autoreleasing object returned from NSMutableArray - iphone

When a method returns an object that is taken from and NSMutableArray does the object must be autoreleased? Check the following method. Also should I autorelease the nil value?
-(NSObject*)getElementByID:(NSString*)ID{
for(int i=0;i<[elements count];i++){
NSObject *element = (NSObject*) [elements objectAtIndex:i];
if([element.key isEqualToString:ID]){
return [element autorelease];
}
}
return nil;
}

You must not autorelease element because you are not an owner of it (you have not put a retain on it). You would have become an owner of it if you acquired it using alloc, new or retain. Since you acquired this object calling objectAtIndex:, you do not own it. See Three Magic Words. Calling autorelease here will cause a crash later do to over-release.
Your method name is incorrect and breaks KVC. A method that begins with get must take a pointer that will be updated with the result. This should be elementForID:. As noted above with the three magic words, naming in ObjC is very important to writing stable code
As a side note, it is traditional to use id is most cases rather than NSObject*. They mean slightly different things, but typically id is correct.

You never need to do any memory management related things to nil. So, no, you should not send autorelease to nil.
You also should not need to send autorelease to the element object that you are returning from your elements array. That object you are returning will remain in memory by virtue of elements itself having retained it. If the calling method would like to retain the value that you return, it may. But if that calling method only uses the returned value within its own scope, it is safe for it to do so without retaining it.

Related

iOS correct way (memory management) for a method to return a value

If I have a class named Foo and I have this function + getIds that should return ids. Would the correct signature of + getIds look like this:
+ (NSArray *)getIds {
NSMutableArray *ids = [[[NSMutableArray alloc] init] autorelease];
return ids;
}
What I'm wondering is that if I should use autorelease on *ids? There is no other way I assume? I can't do [ids release] after the return statement right?
You can send autorelease message along with alloc, init messages. You can also do, return [ids autorelease]; Note: You should not do both at the same time ;-)
You can not return [id release], because release method itself returns nothing.
The typically-correct memory management for returned objects is to have the called method set it as an autoreleased object, except when the method name contains "copy", "new" or "alloc". In those cases (copy/new/alloc), the returned object is retained, and the caller owns it (i.e. the caller is responsible for making sure they are released).
The code you wrote in the question will do the correct thing - it will return an autoreleased object.
When the caller gets the NSArray back, they can use the object as much as they like, and if they don't need the object in future calls, then they don't need to do any extra memory management. At the end of the run loop, the NSArray will be released, which is the desired behavior. If the caller does need the object to live longer, then they have to call retain on it (or something equivalent to that, such as calling something else that calls retain on it), and then they take the responsibility to call release on it later.
Useful stuff:
Apple's iOS memory management guide
My personal memory management guidelines (shorter, more biased)
Understanding run loops
Also, this will all go away when ARC (automatic reference counting, in iOS 5) becomes the norm.
You are already autoreleasing the array, so calling autorelease a second time would be an error that might result in a crash. The fact that you can't do a release after the return (you've left the function by then) is one of the reasons autorelease exists.
About whether the method should return an autoreleased as opposed to a retained object: Only methods that start with alloc or new or contain copy (as in mutableCopy) shall return retained objects. All other method shall return autoreleased objects.

What happens if you try to release an object that has been released?

What if I have an object, say NSIndexPath in which before I do a copy I always release it first?
Is it possible to have a memory count under 0?
I am doing this to prevent memory leaks.. is this a good way?
//global already has some value before in here or it doesn't have a value.. I want to update
//this with a new value (I no longer care to the old pointer)
[global release]
global = [indexPath copy];
Don't. When the retain count reaches 0, your object will be dealloc'ed and its pointer will become invalid, so using it again will cause unpredictable results (namely crashing).
You should read through Apple's Memory Management Guide.
This is the fundamental rule:
You only release or autorelease objects you own. You take ownership of an object if you create it using a method whose name begins with “alloc”, “new”, “copy”, or “mutableCopy” (for example, alloc, newObject, or mutableCopy), or if you send it a retain message.
You use release or autorelease to relinquish ownership of an object. autorelease just means “send a release message in the future” (specifically: when the used autorelease pool receives a drain message).
Update:
As Josh pointed out, the one case you need to consider is when global and indexPath are the same. In that case, you would still "need" the pointer (to perform the copy), so you either autorelease (instead of releasing) or you use a temporary variable to handle that.
What you are doing is essentially correct, so long as global either has an old value that you no longer need or is nil. If it is one of a class's ivars, it will be nil when an instance of the class is created. The one catch is that if the new indexPath happens to be the same object as the one that's already in global, you will have over-released and you will crash.
// global points to object at 0x8BADFOOD
// indexPath also happens to be 0x8BADFOOD; for some reason, it
// hasn't changed since last time. This _can_ happen.
[global release]; // object at 0x8BADFOOD is deallocated
global = [indexPath copy]; // indexPath no longer valid!
// Crash! Bang! Boom!
The way to avoid this is to use a temp variable.
When you declare a property as copy and synthesize that property, the setter method that is created looks essentially like this, and you can do the same thing:
- (void)setMyFloozit:(Floozit *)newFloozit {
// Copy first in case newFloozit and myFloozit are for
// some reason the same object
// Take ownership of a copy of newFloozit
Floozit * tmp = [newFloozit copy];
// We no longer need old value of myFloozit, so we release it.
[myFloozit release];
// tmp contains a value that we own, we just need to assign
// it to the correct name.
myFloozit = tmp;
}
This could be made slightly better by checking first to see whether newFloozit and myFloozit are the same, and doing nothing if they are.

Problem with memory between functions

I have a header of a class A with a NSDictionary *data; in the interface, not as a property.
In one method I call another method of another class B that returns a NSDictionary, I make data = [class method], and all is well.
Later, when data is populated, I try to access data from another method of A, and the app crashes.
If I make a retain on data in the previous method:
data = [class method];
[data retain];
It all works, but I now have a memory leak. Why does it crash?
You have a crash in the first case because the dictionary returned is getting deallocated before you reference it; and a memory leak in the second case because you have a -retain without a corresponding -release.
Most methods that return objects return autoreleased objects. That guarantees that the object will persist until the end of the current run loop, but at that time the object will be released (that's what autorelease does). So if you want to keep the object alive beyond the current run loop, you have to retain it:
data = [[class method] retain];
But once you've retained an object, it's your responsibility to release it. For an object instance variable, the right time to do this is usually in -dealloc:
-(void) dealloc {
[data release];
}
Now, you should also be aware that if you overwrite data with another value, you also have to make sure that the old value gets released properly. That's one of the advantages of using properties: you can have the compiler write functions for you that take care of this. If your property is a retain property, than setting the value with
self.data = newvalue;
will a) release the old value, b) retain the new value, and c) set your instance variable to the new value. You'll still have to release the value yourself in dealloc when your object is destroyed, though.
Why is it a memory leak? If I understand your question, you should just have to do [data release]; in your dealloc method of class A.

How do memory management properties affect cells of an array?

In my iPhone development book, I'm seeing some strange coding examples in regard to what an array does when objects are added to the array and when the whole array is released. One code example has the following properties on an instance array:
#property (nonatomic, retain) NSMutableArray* myArray;
The author adds an object to the array and, immediately after, releases his pointer to the object. Won't the array cell now point to garbage data? Unless, behind the scenes, the array cell retains the object when added.
SomeObject* someObject = [[SomeObject alloc] init];
[self.myArray addObject:someObject];
[someObject release];
The author also releases the the pointer to the array without first going through each array cell and releasing the individual objects. This is a memory leak unless, behind the scenes, each cell is sent a release message;.
- (void)viewDidUnload {
self.myArray = nil;
[super viewDidUnload];
}
Unless, behind the scenes, the array cell retains the object when added.
Yes, this happens.
... unless, behind the scenes, each cell is sent a release message.
This also happens.
You have answered your own question.
Here is a quote from Collections Programming Topics:
And when you add an object to an
NSMutableArray object, the object
isn’t copied, (unless you pass YES as
the argument to
initWithArray:copyItems:). Rather, an
object is added directly to an array.
In a managed memory environment, an
object receives a retain message when
it’s added; in a garbage collected
environment, it is strongly
referenced. When an array is
deallocated in a managed memory
environment, each element is sent a
release message.
Unlike in C or C++ where you constantly worry about whether to delete an object or not for the fear of it is still being used somewhere else, Objective-C (or rather it's actually Cocoa SDK) uses the mechanism of reference counting or ownership.
You might already know how it works but you need to also know that in Cocoa, if an object A needs to use another object B it should own (i.e. retain) it. That object A should not rely on some other object C already retained B, because it cannot know when C releases it. So in your case, since NSArray needs to use all objects added to it latter during its lifetime, it needs to retain all the objects. And because of that, when the array is de-alloc-ed, it needs to release them.
This concept of "you need to retain what you want to use latter" is very important when you are dealing of lots of objects.
There are several places in apple development guides that explain that is a good practice to take the ownership of an object (send a retain message) if you plan to use it later. You should do it so that the object is not destroyed while you still might need to access it.
Considering that, you were right assuming that the NSArray retains the object when it is added to the collection, as it still might try to access it afterwards.
You can check the Memory Management Programming Guide
When you add an object to a collection such as an array, dictionary, or set, the collection takes ownership of it.
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmPractical.html#//apple_ref/doc/uid/TP40004447-SW3
or the Collections Programming Topics for more details
... In a managed memory environment, an object receives a retain message when it’s added.
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Collections/Articles/Arrays.html#//apple_ref/doc/uid/20000132-SW1
You're right on the first point. When an object is added to an array, the array retains the object. Thus, for an object that has been previously retained, it is necessary to release it after adding it to the array or you can end up with a memory leak.
Likewise, when an object is removed
from an array, the array releases the
object. So, if you want to keep it,
you'll need to retain it.
When an array is released, as you
surmised, the array will release all
the objects it contains. Thus,
releasing each object individually is
not necessary and, in fact, would
raise an exception.
Finally, regarding the line of code
in -viewDidUnload that you quoted:
self.myArray = nil;
This works properly with regard to memory management as long as the myArray property was synthesized as follows:
#synthesize myArray;
Synthesizing creates a setter that effectively does the following:
- (void)setMyArray(NSMutableArray *)anArray
{
if (![myArray isEqual:anArray]) {
[myArray release];
myArray = anArray;
[myArray retain];
}
}
So, when called, the above setter will first release the old array (as long as it's not the same object as the new array.) Then, it will retain the new array, which in this case is nil. Note that retaining nil will just do nothing, and won't trigger an error.
Of course, if you don't synthesize the myArray property, or if you override the setter, you will have memory problems unless you also release the old value & retain the new in your setter.

What's the recommended approach for allocating an object in an instance methode, which will later on be returned?

For example look at the following example:
Code1
-(NSString*)getString{
return [[[NSString alloc] initWithFormat:#"test"] autorelease];
}
-(void)printTestString{
NSString *testStr = self.getString;
[testStr retain]
NSLog(#"%#",testStr);
[testStr release]
}
Code2
-(NSString*)getString{
return [[NSString alloc] initWithFormat:#"test"];
}
-(void)printTestString{
NSString *testStr = self.getString;
NSLog(#"%#",testStr);
[testStr release];
}
Code 1 and Code 2 should be valid Code Snippets and no leaks should appear.
Code 1 uses autorelease so the return variable has to be retained in printTestString and after using it released. So there is a small Overhead here because of autorelease.
Code 2 doesn't release the NSString in getString so you have to only release it after using it. Seems your have to write less and you dont have overhead because no autorelease is used.
Which one is the de facto "standard" approach that is used out there?
Another thing I was asking myself. Could the autorelease in getString and the retain with
[testStr retain]
be a problem, when the autorelease pool releases the variable right after
NSString *testStr = self.getString;
then the string would be gone. Is that possible or does the compiler prevent that sort of thing?
Thanks
-Sebo
Do this:
-(NSString*)getString{
return [[[NSString alloc] initWithFormat:#"test"] autorelease];
}
-(void)printTestString{
NSString *testStr = self.getString;
NSLog(#"%#",testStr);
}
Your getString method autoreleases the NSString, which means printTestString doesn't need to retain or release it. Autoreleasing in getString makes sense, because it alloced the object and is therefore the 'owner' of the object. I suggest studying Objective-C's memory management rules before proceeding, as they are very important.
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/MemoryMgmt/Articles/mmRules.html#//apple_ref/doc/uid/20000994-BAJHFBGH
Jake's answer is correct for almost all of the situations you'll need to return an object from a method, but there are cases where you might want to return something that isn't autoreleased. From the Memory Management Programming Guide (Mac version, but they're the same rules):
You take ownership of an object if you
create it using a method whose name
begins with “alloc” or “new” or
contains “copy” (for example, alloc,
newObject, or mutableCopy), or if you
send it a retain message.
Also, from the Coding Guidelines for Cocoa:
In your methods and functions that
return object values, make sure that
you return these values autoreleased
unless they are object-creation or
object-copy methods (new, alloc, copy
and their variants). “Autoreleased” in
this context does not necessarily mean
the object has to be explicitly
autoreleased—that is, sending
autorelease to the object just before
returning it. In a general sense, it
simply means the return value is not
freed by the caller.
For performance reasons, it’s
advisable to avoid autoreleasing
objects in method implementations
whenever you can, especially with code
that might be executed frequently
within a short period; an example of
such code would be a loop with unknown
and potentially high loop count.
Therefore, methods containing the prefix alloc or new, or those that contain the word copy by convention will have you returning objects that are not autoreleased. In fact, the Clang Static Analyzer understands this convention and will assume non-autoreleased objects being returned from methods that follow these naming rules.
I've used the new prefix in situations where I preferred not to return autoreleased objects (tight loops where I didn't want to manage an autorelease pool, etc.). Again, returning autoreleased objects is what's recommended in almost all cases, but there are some times where you might want to avoid that.