iOS -- implementing complex numbers - iphone

As a follow-up to this question:
I was in the process of implementing a calculator app using Apple's complex number support when I noticed that if one calculates using that support, one ends up with the following:
(1+i)^2=1.2246063538223773e-16 + 2i
Of course the correct identity is (1+i)^2=2i. This is a specific example of a more general phenomenon -- roundoff errors can be really annoying if they round a part that is supposed to be zero to something that is slightly nonzero.
Suggestions on how to deal with this? I could implement integer powers of complex numbers in other ways, but the general problem will remain, and my solution could itself cause other inconsistencies.

As you note, this is as standard rounding error issue with floating points. A #Howard notes, you should likely round your double results back into the float range before displaying.
I typically use FLT_EPSILON to help me with these kinds of things as well.
#define fequal(a,b) (fabs((a) - (b)) < FLT_EPSILON)
#define fequalzero(a) (fabs(a) < FLT_EPSILON)
With those, you might like a function like this (untested)
inline void froundzero(a) { if (fequalzero(a)) a = 0; }
The complex version is left as an exercise for the reader as they say :D

Related

How to turn off denormal number support in MATLAB?

I am trying to turn off denormal number support in matlab, so that basically any two computations that would result in a denormal number would instead just result in zero (DAZ, FTZ)
I've researched several sites include the one below, but I haven't found anything about doing this.
http://blogs.mathworks.com/cleve/2014/07/21/floating-point-denormals-insignificant-but-controversial-2/
I've never heard of such an option in Matlab. It would likely require deep manipulation of a lot of the floating-point math, effectively requiring a new datatype to be supported if this were to be an easily toggle-able option in Matlab. You could write your own mex C code to do this (more here and here) for an individual function.
And of course you can get something like this with one line of Matlab – here's an example:
a = [1e-300 1e-310 1e-310];
b = [1e-301 1e-311 1e-310];
x = a-b;
x(abs(x(:)) < realmin(class(x))) = 0;
where realmin is the smallest normalized floating-point number. However, the floating point math is still performed using the extended denormal/subnormal values in a. It's just the output that's clipped to zero.
Unless you're doing this for fun an experimentation, or possibly running code on an embedded platform, I'd really recommend against disabling denormals as a form of optimization. Instead, focus on why your values are so small and how you might rescale your problem to avoid the issue entirely.

Is Cross-Platform Double Math Determinism Possible with Rounding?

I understand that there can be a .000000000000001 margin of error for double math and this is be made worse by multiplication to make the margin of error larger. With that said, is it possible to round off every calculation to a significant digit (maybe 4 decimal places) to achieve consistency across all platforms? Would it simply be more efficient using decimal math or will decimal math require similar rounding?
I will be using this for my lockstep RTS game which requires a deterministic physics engine for synchronous multiplayer. I'm using C#. Some calculations and some calculations I wish to perform include Sqrt, Sin, and Pow of the System.Math library.
I've actually been thinking about the whole matter in the wrong way. Instead of trying to minimize errors with greater accuracy (and more overhead), I should just use a type that stores and operates deterministically. I used the answer here: Fixed point math in c#? which helped me create a fixed point type that works perfectly and efficiently.

Getting around floating point error with logarithms?

I'm trying to write a basic digit counter (an integer is inputted and the number of digits of that integer is outputted) for positive integers. This is my general formula:
dig(x) := Math.floor(Math.log(x,10))
I tried implementing the equivalent of dig(x) in Ruby, and found that when I was computing dig(1000) I was getting 2 instead of 3 because Math.log was returning 2.9999999999999996 which would then be truncated down to 2. What is the proper way to handle this problem? (I'm assuming this problem can occur regardless of the language used to implement this approach, but if that's not the case then please explain that in your answer).
To get an exact count of the number of digits in an integer, you can do the usual thing: (in C/C++, assuming n is non-negative)
int digits = 0;
while (n > 0) {
n = n / 10; // integer division, just drops the ones digit and shifts right
digits = digits + 1;
}
I'm not certain but I suspect running a built-in logarithm function won't be faster than this, and this will give you an exact answer.
I thought about it for a minute and couldn't come up with a way to make the logarithm-based approach work with any guarantees, and almost convinced myself that it is probably a doomed pursuit in the first place because of floating point rounding errors, etc.
From The Art of Computer Programming volume 2, we will eliminate one bit of error before the floor function is applied by adding that one bit back in.
Let x be the result of log and then do x += x / 0x10000000 for a single precision floating point number (C's float). Then pass the value into floor.
This is guaranteed to be the fastest (assuming you have the answer in numerical form) because it uses only a few floating point instructions.
Floating point is always subject to roundoff error; that's one of the hazards you need to be aware of, and actively manage, when working with it. The proper way to handle it, if you must use floats is to figure out what the expected amount of accumulated error is and allow for that in comparisons and printouts -- round off appropriately, compare for whether the difference is within that range rather than comparing for equality, etcetera.
There is no exact binary-floating-point representation of simple things like 1/10th, for example.
(As others have noted, you could rewrite the problem to avoid using the floating-point-based solution entirely, but since you asked specifically about working log() I wanted to address that question; apologies if I'm off target. Some of the other answers provide specific suggestions for how you might round off the result. That would "solve" this particular case, but as your floating operations get more complicated you'll have to continue to allow for roundoff accumulating at each step and either deal with the error at each step or deal with the cumulative error -- the latter being the more complicated but more accurate solution.)
If this is a serious problem for an application, folks sometimes use scaled fixed point instead (running financial computations in terms of pennies rather than dollars, for example). Or they use one of the "big number" packages which computes in decimal rather than in binary; those have their own round-off problems, but they round off more the way humans expect them to.

Numerical Integral of large numbers in Fortran 90

so I have the following Integral that i need to do numerically:
Int[Exp(0.5*(aCosx + bSinx + cCos2x + dSin2x))] x=0..2Pi
The problem is that the output at any given value of x can be extremely large, e^2000, so larger than I can deal with in double precision.
I havn't had much luck googling for the following, how do you deal with large numbers in fortran, not high precision, i dont care if i know it to beyond double precision, and at the end i'll just be taking the log, but i just need to be able to handle the large numbers untill i can take the log..
Are there integration packes that have the ability to handle arbitrarily large numbers? Mathematica clearly can.. so there must be something like this out there.
Cheers
This is probably an extended comment rather than an answer but here goes anyway ...
As you've already observed Fortran isn't equipped, out of the box, with the facility for handling such large numbers as e^2000. I think you have 3 options.
Use mathematics to reduce your problem to one which does (or a number of related ones which do) fall within the numerical range that your Fortran compiler can compute.
Use Mathematica or one of the other computer algebra systems (eg Maple, SAGE, Maxima). All (I think) of these can be integrated into a Fortran program (with varying degrees of difficulty and integration).
Use a library for high-precision (often called either arbitray-precision or multiple-precision too) arithmetic. Your favourite search engine will turn up a number of these for you, some written in Fortran (and therefore easy to integrate), some written in C/C++ or other languages (and therefore slightly harder to integrate). You might start your search at Lawrence Berkeley or the GNU bignum library.
(Yes I know that I wrote that you have 3 options, but your question suggests that you aren't ready to consider this yet) You could write your own high-/arbitrary-/multiple-precision functions. Fortran provides everything you need to construct such a library, there is a lot of work already done in the field to learn from, and it might be something of interest to you.
In practice it generally makes sense to apply as much mathematics as possible to a problem before resorting to a computer, that process can not only assist in solving the problem but guide your selection or construction of a program to solve what's left of the problem.
I agree with High Peformance Mark that the best option here numerically is to use analytics to scale or simplify the result first.
I will mention that if you do want to brute force it, gfortran (as of 4.6, with the libquadmath library) has support for quadruple precision reals, which you can use by selecting the appropriate kind. As long as your answers (and the intermediate results!) don't get too much bigger than what you're describing, that may work, but it will generally be much slower than double precision.
This requires looking deeper at the problem you are trying to solve and the behavior of the underlying mathematics. To add to the good advice already provided by Mark and Jonathan, consider expanding the exponential and trig functions into Taylor series and truncating to the desired level of precision.
Also, take a step back and ask why you are trying to accomplish by calculating this value. As an example, I recently had to debug why I was getting outlandish results from a property correlation which was calculating vapor pressure of a fluid to see if condensation was occurring. I spent a long time trying to understand what was wrong with the temperature being fed into the correlation until I realized the case causing the error was a simulation of vapor detonation. The problem was not in the numerics but in the logic of checking for condensation during a literal explosion; physically, a condensation check made no sense. The real problem was the code was asking an unnecessary question; it already had the answer.
I highly recommend Forman Acton's Numerical Methods That (Usually) Work and Real Computing Made Real. Both focus on problems like this and suggest techniques to tame ill-mannered computations.

What values to use in my 3D-space

This is not really a functional problem I'm having but more a strategic question. I am new to 3D-programming and when looking at tutorials and examples I recon that the coordinates are usually between -1 and 1.
It feels more natural using integers as coordinates, I think. Is there any particula reason(s) why small float-values are used, perhaps performance or anything else?
I haven't gotten that far yet so perhaps this questions is a bit too early to ask, but when creating objects/textures that I will import, they are created in applications where the coordinates usually are having sizes in integer numbers, I guess (E.g. Photoshop for textures). Doesn't this matter for how I define my x/y/z-sizes?
Thanks in advance!
I've never seen such small ranges used. This is likely to introduce problems in calculations I would say.
A more common style is to use a real-world scale, so 1 unit = 1 metre. And using floating-point values is more realistic - you need fractional values because when you rotate something, the new coordinates will nearly always be non integral. Using integers you'll run into problems of scale and precision.