Two seemingly identical semantics: one binds implicitly, the other does not - scala

Hello: I've been learning Scala recently (my related background is mostly in C++ templates), and I've run into something I currently don't understand about Scala, and it is driving me insane. :(
(Also, this is my first post to StackOverflow, where I've noticed most of the really awesome Scala people seem to hang out, so I'm really sorry if I do something horrendously stupid with the mechanism.)
My specific confusion relates to implicit argument binding: I have come up with a specific case where the implicit argument refuses to bind, but a function with seemingly identical semantics does.
Now, it of course could be a compiler bug, but given that I just started working with Scala, the probability of me having already run into some kind of serious bug are sufficiently small that I'm expecting someone to explain what I did wrong. ;P
I have gone through the code and whittled it quite a bit in order to come up with the single example that doesn't work. Unfortunately, that example is still reasonably complex, as the problem seems to only occur in the generalization. :(
1) simplified code that does not work in the way I expected
import HList.::
trait HApplyOps {
implicit def runNil
(input :HNil)
(context :Object)
:HNil
= {
HNil()
}
implicit def runAll[Input <:HList, Output <:HList]
(input :Int::Input)
(context :Object)
(implicit run :Input=>Object=>Output)
:Int::Output
= {
HCons(0, run(input.tail)(context))
}
def runAny[Input <:HList, Output <:HList]
(input :Input)
(context :Object)
(implicit run :Input=>Object=>Output)
:Output
= {
run(input)(context)
}
}
sealed trait HList
final case class HCons[Head, Tail <:HList]
(head :Head, tail :Tail)
extends HList
{
def ::[Value](value :Value) = HCons(value, this)
}
final case class HNil()
extends HList
{
def ::[Value](value :Value) = HCons(value, this)
}
object HList extends HApplyOps {
type ::[Head, Tail <:HList] = HCons[Head, Tail]
}
class Test {
def main(args :Array[String]) {
HList.runAny( HNil())(null) // yay! ;P
HList.runAny(0::HNil())(null) // fail :(
}
}
This code, compiled with Scala 2.9.0.1, returns the following error:
broken1.scala:53: error: No implicit view available from HCons[Int,HNil] => (java.lang.Object) => Output.
HList.runAny(0::HNil())(null)
My expectation in this case is that runAll would be bound to the implicit run argument to runAny.
Now, if I modify runAll so that, instead of taking its two arguments directly, it instead returns a function that in turn takes those two arguments (a trick I thought to try as I saw it in someone else's code), it works:
2) modified code that has the same runtime behavior and actually works
implicit def runAll[Input <:HList, Output <:HList]
(implicit run :Input=>Object=>Output)
:Int::Input=>Object=>Int::Output
= {
input =>
context =>
HCons(0, run(input.tail)(context))
}
In essence, my question is: why does this work? ;( I would expect that these two functions have the same overall type signature:
1: [Input <:HList, Output <:HList] (Int::Input)(Object):Int::Output
2: [Input <:Hlist, Output <:HList] :Int::Input=>Object=>Int::Output
If it helps understand the problem, some other changes also "work" (although these change the semantics of the function, and therefore are not usable solutions):
3) hard-coding runAll for only a second level by replacing Output with HNil
implicit def runAll[Input <:HList, Output <:HList]
(input :Int::Input)
(context :Object)
(implicit run :Input=>Object=>HNil)
:Int::HNil
= {
HCons(0, run(input.tail)(context))
}
4) removing the context argument from the implicit functions
trait HApplyOps {
implicit def runNil
(input :HNil)
:HNil
= {
HNil()
}
implicit def runAll[Input <:HList, Output <:HList]
(input :Int::Input)
(implicit run :Input=>Output)
:Int::Output
= {
HCons(0, run(input.tail))
}
def runAny[Input <:HList, Output <:HList]
(input :Input)
(context :Object)
(implicit run :Input=>Output)
:Output
= {
run(input)
}
}
Any explanation anyone may have for this would be much appreciated. :(
(Currently, my best guess is that the order of the implicit argument with respect to the other arguments is the key factor that I'm missing, but one that I'm confused by: runAny has an implicit argument at the end as well, so the obvious "implicit def doesn't work well with trailing implicit" doesn't make sense to me.)

When you declare an implicit def like this:
implicit def makeStr(i: Int): String = i.toString
then the compiler can automatically create an implicit Function object from this definition for you, and will insert it where an implicit of type Int => String is expected. This is what happens in your line HList.runAny(HNil())(null).
But when you define implicit defs which themselves accept implicit parameters (like your runAll method), it doesn't work any more, as the compiler cannot create a Function object whose apply method would require an implicit — much less guarantee that such an implicit would be available at the call site.
The solution to this is to define something like this instead of runAll:
implicit def runAllFct[Input <: HList, Output <: HList]
(implicit run: Input => Object => Output):
Int :: Input => Object => Int :: Output =
{ input: Int :: Input =>
context: Object =>
HCons(0, run(input.tail)(context))
}
This definition is a bit more explicit, as the compiler now won't need to try to create a Function object from your def, but will instead call your def directly to get the needed function object. And, while calling it, will automatically insert the needed implicit parameter, which it can resolve right away.
In my opinion, whenever you expect implicit functions of this type, you should provide an implicit def that does indeed return a Function object. (Other users may disagree… anyone?) The fact that the compiler is able to create Function wrappers around an implicit def is there mainly, I suppose, to support implicit conversions with a more natural syntax, e.g. using view bounds together with simple implicit defs like my first Int to String conversion.

(Note: this is a summary of the discussion that took place in possibly more detail in the comments section of another answer on this question.)
It turns out that the problem here is that the implicit parameter is not first in runAny, but not because the implicit binding mechanism is ignoring it: instead, the issue is that the type parameter Output is not bound to anything, and needs to be indirectly inferred from the type of the run implicit parameter, which is happening "too late".
In essence, the code for "undetermined type parameters" (which is what Output is in this circumstance) only gets used in situations where the method in question is considered to be "implicit", which is determined by its direct parameter list: in this case, runAny's parameter list is actually just (input :Input), and isn't "implicit".
So, the type parameter for Input manages to work (getting set to Int::HNil), but Output is simply set to Nothing, which "sticks" and causes the type of the run argument to be Int::HNil=>Object=>Nothing, which is not satisfiable by runNil, causing runAny's type inferencing to fail, disqualifying it for usage as an implicit argument to runAll.
By reorganizing the parameters as done in my modified code sample #2, we make runAny itself be "implicit", allowing it to first get its type parameters fully determined before applying its remaining arguments: this happens because its implicit argument will first get bound to runNil (or runAny again for more than two levels), whose return type will get taken/bound.
To tie up the loose ends: the reason that the code sample #3 worked in this situation is that the Output parameter wasn't even required: the fact that it was bound to Nothing didn't affect any subsequent attempts to bind it to anything or use it for anything, and runNil was easily chosen to bind to its version of the run implicit parameter.
Finally, code sample #4 was actually degenerate, and shouldn't even have been considered to "work" (I had only verified that it compiled, not that it generated the appropriate output): the data types of its implicit parameters were so simplistic (Input=>Output, where Input and Output were actually intended to be the same type) that it would simply get bound to conforms:<:<[Input,Output]: a function that in turn acted as the identity in this circumstance.
(For more information on the #4 case, see this apparently dead-on related question: problem with implicit ambiguity between my method and conforms in Predef.)

Related

Scala: Why use implicit on function argument?

I have a following function:
def getIntValue(x: Int)(implicit y: Int ) : Int = {x + y}
I see above declaration everywhere. I understand what above function is doing. It is a currying function which takes two arguments. If you omit the second argument, it will invoke implicit definition which returns int instead. So I think it is something very similar to defining a default value for the argument.
implicit val temp = 3
scala> getIntValue(3)
res8: Int = 6
I was wondering what are the benefits of above declaration?
Here's my "pragmatic" answer: you typically use currying as more of a "convention" than anything else meaningful. It comes in really handy when your last parameter happens to be a "call by name" parameter (for example: : => Boolean):
def transaction(conn: Connection)(codeToExecuteInTransaction : => Boolean) = {
conn.startTransaction // start transaction
val booleanResult = codeToExecuteInTransaction //invoke the code block they passed in
//deal with errors and rollback if necessary, or commit
//return connection to connection pool
}
What this is saying is "I have a function called transaction, its first parameter is a Connection and its second parameter will be a code-block".
This allows us to use this method like so (using the "I can use curly brace instead of parenthesis rule"):
transaction(myConn) {
//code to execute in a transaction
//the code block's last executable statement must be a Boolean as per the second
//parameter of the transaction method
}
If you didn't curry that transaction method, it would look pretty unnatural doing this:
transaction(myConn, {
//code block
})
How about implicit? Yes it can seem like a very ambiguous construct, but you get used to it after a while, and the nice thing about implicit functions is they have scoping rules. So this means for production, you might define an implicit function for getting that database connection from the PROD database, but in your integration test you'll define an implicit function that will superscede the PROD version, and it will be used to get a connection from a DEV database instead for use in your test.
As an example, how about we add an implicit parameter to the transaction method?
def transaction(implicit conn: Connection)(codeToExecuteInTransaction : => Boolean) = {
}
Now, assuming I have an implicit function somewhere in my code base that returns a Connection, like so:
def implicit getConnectionFromPool() : Connection = { ...}
I can execute the transaction method like so:
transaction {
//code to execute in transaction
}
and Scala will translate that to:
transaction(getConnectionFromPool) {
//code to execute in transaction
}
In summary, Implicits are a pretty nice way to not have to make the developer provide a value for a required parameter when that parameter is 99% of the time going to be the same everywhere you use the function. In that 1% of the time you need a different Connection, you can provide your own connection by passing in a value instead of letting Scala figure out which implicit function provides the value.
In your specific example there are no practical benefits. In fact using implicits for this task will only obfuscate your code.
The standard use case of implicits is the Type Class Pattern. I'd say that it is the only use case that is practically useful. In all other cases it's better to have things explicit.
Here is an example of a typeclass:
// A typeclass
trait Show[a] {
def show(a: a): String
}
// Some data type
case class Artist(name: String)
// An instance of the `Show` typeclass for that data type
implicit val artistShowInstance =
new Show[Artist] {
def show(a: Artist) = a.name
}
// A function that works for any type `a`, which has an instance of a class `Show`
def showAListOfShowables[a](list: List[a])(implicit showInstance: Show[a]): String =
list.view.map(showInstance.show).mkString(", ")
// The following code outputs `Beatles, Michael Jackson, Rolling Stones`
val list = List(Artist("Beatles"), Artist("Michael Jackson"), Artist("Rolling Stones"))
println(showAListOfShowables(list))
This pattern originates from a functional programming language named Haskell and turned out to be more practical than the standard OO practices for writing a modular and decoupled software. The main benefit of it is it allows you to extend the already existing types with new functionality without changing them.
There's plenty of details unmentioned, like syntactic sugar, def instances and etc. It is a huge subject and fortunately it has a great coverage throughout the web. Just google for "scala type class".
There are many benefits, outside of your example.
I'll give just one; at the same time, this is also a trick that you can use on certain occasions.
Imagine you create a trait that is a generic container for other values, like a list, a set, a tree or something like that.
trait MyContainer[A] {
def containedValue:A
}
Now, at some point, you find it useful to iterate over all elements of the contained value.
Of course, this only makes sense if the contained value is of an iterable type.
But because you want your class to be useful for all types, you don't want to restrict A to be of a Seq type, or Traversable, or anything like that.
Basically, you want a method that says: "I can only be called if A is of a Seq type."
And if someone calls it on, say, MyContainer[Int], that should result in a compile error.
That's possible.
What you need is some evidence that A is of a sequence type.
And you can do that with Scala and implicit arguments:
trait MyContainer[A] {
def containedValue:A
def aggregate[B](f:B=>B)(implicit ev:A=>Seq[B]):B =
ev(containedValue) reduce f
}
So, if you call this method on a MyContainer[Seq[Int]], the compiler will look for an implicit Seq[Int]=>Seq[B].
That's really simple to resolve for the compiler.
Because there is a global implicit function that's called identity, and it is always in scope.
Its type signature is something like: A=>A
It simply returns whatever argument is passed to it.
I don't know how this pattern is called. (Can anyone help out?)
But I think it's a neat trick that comes in handy sometimes.
You can see a good example of that in the Scala library if you look at the method signature of Seq.sum.
In the case of sum, another implicit parameter type is used; in that case, the implicit parameter is evidence that the contained type is numeric, and therefore, a sum can be built out of all contained values.
That's not the only use of implicits, and certainly not the most prominent, but I'd say it's an honorable mention. :-)

Scala: Type parameters and inheritance

I'm seeing something I do not understand. I have a hierarchy of (say) Vehicles, a corresponding hierarchy of VehicalReaders, and a VehicleReader object with apply methods:
abstract class VehicleReader[T <: Vehicle] {
...
object VehicleReader {
def apply[T <: Vehicle](vehicleId: Int): VehicleReader[T] = apply(vehicleType(vehicleId))
def apply[T <: Vehicle](vehicleType VehicleType): VehicleReader[T] = vehicleType match {
case VehicleType.Car => new CarReader().asInstanceOf[VehicleReader[T]]
...
Note that when you have more than one apply method, you must specify the return type. I have no issues when there is no need to specify the return type.
The cast (.asInstanceOf[VehicleReader[T]]) is the reason for the question - without it the result is compile errors like:
type mismatch;
found : CarReader
required: VehicleReader[T]
case VehicleType.Car => new CarReader()
^
Related questions:
Why cannot the compiler see a CarReader as a VehicleReader[T]?
What is the proper type parameter and return type to use in this situation?
I suspect the root cause here is that VehicleReader is invariant on its type parameter, but making it covariant does not change the result.
I feel like this should be rather simple (i.e., this is easy to accomplish in Java with wildcards).
The problem has a very simple cause and really doesn't have anything to do with variance. Consider even more simple example:
object Example {
def gimmeAListOf[T]: List[T] = List[Int](10)
}
This snippet captures the main idea of your code. But it is incorrect:
val list = Example.gimmeAListOf[String]
What will be the type of list? We asked gimmeAListOf method specifically for List[String], however, it always returns List[Int](10). Clearly, this is an error.
So, to put it in words, when the method has a signature like method[T]: Example[T] it really declares: "for any type T you give me I will return an instance of Example[T]". Such types are sometimes called 'universally quantified', or simply 'universal'.
However, this is not your case: your function returns specific instances of VehicleReader[T] depending on the value of its parameter, e.g. CarReader (which, I presume, extends VehicleReader[Car]). Suppose I wrote something like:
class House extends Vehicle
val reader = VehicleReader[House](VehicleType.Car)
val house: House = reader.read() // Assuming there is a method VehicleReader[T].read(): T
The compiler will happily compile this, but I will get ClassCastException when this code is executed.
There are two possible fixes for this situation available. First, you can use existential (or existentially quantified) type, which can be though as a more powerful version of Java wildcards:
def apply(vehicleType: VehicleType): VehicleReader[_] = ...
Signature for this function basically reads "you give me a VehicleType and I return to you an instance of VehicleReader for some type". You will have an object of type VehicleReader[_]; you cannot say anything about type of its parameter except that this type exists, that's why such types are called existential.
def apply(vehicleType: VehicleType): VehicleReader[T] forSome {type T} = ...
This is an equivalent definition and it is probably more clear from it why these types have such properties - T type is hidden inside parameter, so you don't know anything about it but that it does exist.
But due to this property of existentials you cannot really obtain any information about real type parameters. You cannot get, say, VehicleReader[Car] out of VehicleReader[_] except via direct cast with asInstanceOf, which is dangerous, unless you store a TypeTag/ClassTag for type parameter in VehicleReader and check it before the cast. This is sometimes (in fact, most of time) unwieldy.
That's where the second option comes to the rescue. There is a clear correspondence between VehicleType and VehicleReader[T] in your code, i.e. when you have specific instance of VehicleType you definitely know concrete T in VehicleReader[T] signature:
VehicleType.Car -> CarReader (<: VehicleReader[Car])
VehicleType.Truck -> TruckReader (<: VehicleReader[Truck])
and so on.
Because of this it makes sense to add type parameter to VehicleType. In this case your method will look like
def apply[T <: Vehicle](vehicleType: VehicleType[T]): VehicleReader[T] = ...
Now input type and output type are directly connected, and the user of this method will be forced to provide a correct instance of VehicleType[T] for that T he wants. This rules out the runtime error I have mentioned earlier.
You will still need asInstanceOf cast though. To avoid casting completely you will have to move VehicleReader instantiation code (e.g. yours new CarReader()) to VehicleType, because the only place where you know real value of VehicleType[T] type parameter is where instances of this type are constructed:
sealed trait VehicleType[T <: Vehicle] {
def newReader: VehicleReader[T]
}
object VehicleType {
case object Car extends VehicleType[Car] {
def newReader = new CarReader
}
// ... and so on
}
Then VehicleReader factory method will then look very clean and be completely typesafe:
object VehicleReader {
def apply[T <: Vehicle](vehicleType: VehicleType[T]) = vehicleType.newReader
}

How to test type conformance of higher-kinded types in Scala

I am trying to test whether two "containers" use the same higher-kinded type. Look at the following code:
import scala.reflect.runtime.universe._
class Funct[A[_],B]
class Foo[A : TypeTag](x: A) {
def test[B[_]](implicit wt: WeakTypeTag[B[_]]) =
println(typeOf[A] <:< weakTypeOf[Funct[B,_]])
def print[B[_]](implicit wt: WeakTypeTag[B[_]]) = {
println(typeOf[A])
println(weakTypeOf[B[_]])
}
}
val x = new Foo(new Funct[Option,Int])
x.test[Option]
x.print[Option]
The output is:
false
Test.Funct[Option,Int]
scala.Option[_]
However, I expect the conformance test to succeed. What am I doing wrong? How can I test for higher-kinded types?
Clarification
In my case, the values I am testing (the x: A in the example) come in a List[c.Expr[Any]] in a Macro. So any solution relying on static resolution (as the one I have given), will not solve my problem.
It's the mixup between underscores used in type parameter definitions and elsewhere. The underscore in TypeTag[B[_]] means an existential type, hence you get a tag not for B, but for an existential wrapper over it, which is pretty much useless without manual postprocessing.
Consequently typeOf[Funct[B, _]] that needs a tag for raw B can't make use of the tag for the wrapper and gets upset. By getting upset I mean it refuses to splice the tag in scope and fails with a compilation error. If you use weakTypeOf instead, then that one will succeed, but it will generate stubs for everything it couldn't splice, making the result useless for subtyping checks.
Looks like in this case we really hit the limits of Scala in the sense that there's no way for us to refer to raw B in WeakTypeTag[B], because we don't have kind polymorphism in Scala. Hopefully something like DOT will save us from this inconvenience, but in the meanwhile you can use this workaround (it's not pretty, but I haven't been able to come up with a simpler approach).
import scala.reflect.runtime.universe._
object Test extends App {
class Foo[B[_], T]
// NOTE: ideally we'd be able to write this, but since it's not valid Scala
// we have to work around by using an existential type
// def test[B[_]](implicit tt: WeakTypeTag[B]) = weakTypeOf[Foo[B, _]]
def test[B[_]](implicit tt: WeakTypeTag[B[_]]) = {
val ExistentialType(_, TypeRef(pre, sym, _)) = tt.tpe
// attempt #1: just compose the type manually
// but what do we put there instead of question marks?!
// appliedType(typeOf[Foo], List(TypeRef(pre, sym, Nil), ???))
// attempt #2: reify a template and then manually replace the stubs
val template = typeOf[Foo[Hack, _]]
val result = template.substituteSymbols(List(typeOf[Hack[_]].typeSymbol), List(sym))
println(result)
}
test[Option]
}
// has to be top-level, otherwise the substituion magic won't work
class Hack[T]
An astute reader will notice that I used WeakTypeTag in the signature of foo, even though I should be able to use TypeTag. After all, we call foo on an Option which is a well-behaved type, in the sense that it doesn't involve unresolved type parameters or local classes that pose problems for TypeTags. Unfortunately, it's not that simple because of https://issues.scala-lang.org/browse/SI-7686, so we're forced to use a weak tag even though we shouldn't need to.
The following is an answer that works for the example I have given (and might help others), but does not apply to my (non-simplified) case.
Stealing from #pedrofurla's hint, and using type-classes:
trait ConfTest[A,B] {
def conform: Boolean
}
trait LowPrioConfTest {
implicit def ctF[A,B] = new ConfTest[A,B] { val conform = false }
}
object ConfTest extends LowPrioConfTest {
implicit def ctT[A,B](implicit ev: A <:< B) =
new ConfTest[A,B] { val conform = true }
}
And add this to Foo:
def imp[B[_]](implicit ct: ConfTest[A,Funct[B,_]]) =
println(ct.conform)
Now:
x.imp[Option] // --> true
x.imp[List] // --> false

Spurious ambiguous reference error in Scala 2.7.7 compiler/interpreter?

Can anyone explain the compile error below? Interestingly, if I change the return type of the get() method to String, the code compiles just fine. Note that the thenReturn method has two overloads: a unary method and a varargs method that takes at least one argument. It seems to me that if the invocation is ambiguous here, then it would always be ambiguous.
More importantly, is there any way to resolve the ambiguity?
import org.scalatest.mock.MockitoSugar
import org.mockito.Mockito._
trait Thing {
def get(): java.lang.Object
}
new MockitoSugar {
val t = mock[Thing]
when(t.get()).thenReturn("a")
}
error: ambiguous reference to overloaded definition,
both method thenReturn in trait OngoingStubbing of type
java.lang.Object,java.lang.Object*)org.mockito.stubbing.OngoingStubbing[java.lang.Object]
and method thenReturn in trait OngoingStubbing of type
(java.lang.Object)org.mockito.stubbing.OngoingStubbing[java.lang.Object]
match argument types (java.lang.String)
when(t.get()).thenReturn("a")
Well, it is ambiguous. I suppose Java semantics allow for it, and it might merit a ticket asking for Java semantics to be applied in Scala.
The source of the ambiguitity is this: a vararg parameter may receive any number of arguments, including 0. So, when you write thenReturn("a"), do you mean to call the thenReturn which receives a single argument, or do you mean to call the thenReturn that receives one object plus a vararg, passing 0 arguments to the vararg?
Now, what this kind of thing happens, Scala tries to find which method is "more specific". Anyone interested in the details should look up that in Scala's specification, but here is the explanation of what happens in this particular case:
object t {
def f(x: AnyRef) = 1 // A
def f(x: AnyRef, xs: AnyRef*) = 2 // B
}
if you call f("foo"), both A and B
are applicable. Which one is more
specific?
it is possible to call B with parameters of type (AnyRef), so A is
as specific as B.
it is possible to call A with parameters of type (AnyRef,
Seq[AnyRef]) thanks to tuple
conversion, Tuple2[AnyRef,
Seq[AnyRef]] conforms to AnyRef. So
B is as specific as A. Since both are
as specific as the other, the
reference to f is ambiguous.
As to the "tuple conversion" thing, it is one of the most obscure syntactic sugars of Scala. If you make a call f(a, b), where a and b have types A and B, and there is no f accepting (A, B) but there is an f which accepts (Tuple2(A, B)), then the parameters (a, b) will be converted into a tuple.
For example:
scala> def f(t: Tuple2[Int, Int]) = t._1 + t._2
f: (t: (Int, Int))Int
scala> f(1,2)
res0: Int = 3
Now, there is no tuple conversion going on when thenReturn("a") is called. That is not the problem. The problem is that, given that tuple conversion is possible, neither version of thenReturn is more specific, because any parameter passed to one could be passed to the other as well.
In the specific case of Mockito, it's possible to use the alternate API methods designed for use with void methods:
doReturn("a").when(t).get()
Clunky, but it'll have to do, as Martin et al don't seem likely to compromise Scala in order to support Java's varargs.
Well, I figured out how to resolve the ambiguity (seems kind of obvious in retrospect):
when(t.get()).thenReturn("a", Array[Object](): _*)
As Andreas noted, if the ambiguous method requires a null reference rather than an empty array, you can use something like
v.overloadedMethod(arg0, null.asInstanceOf[Array[Object]]: _*)
to resolve the ambiguity.
If you look at the standard library APIs you'll see this issue handled like this:
def meth(t1: Thing): OtherThing = { ... }
def meth(t1: Thing, t2: Thing, ts: Thing*): OtherThing = { ... }
By doing this, no call (with at least one Thing parameter) is ambiguous without extra fluff like Array[Thing](): _*.
I had a similar problem using Oval (oval.sf.net) trying to call it's validate()-method.
Oval defines 2 validate() methods:
public List<ConstraintViolation> validate(final Object validatedObject)
public List<ConstraintViolation> validate(final Object validatedObject, final String... profiles)
Trying this from Scala:
validator.validate(value)
produces the following compiler-error:
both method validate in class Validator of type (x$1: Any,x$2: <repeated...>[java.lang.String])java.util.List[net.sf.oval.ConstraintViolation]
and method validate in class Validator of type (x$1: Any)java.util.List[net.sf.oval.ConstraintViolation]
match argument types (T)
var violations = validator.validate(entity);
Oval needs the varargs-parameter to be null, not an empty-array, so I finally got it to work with this:
validator.validate(value, null.asInstanceOf[Array[String]]: _*)

Could/should an implicit conversion from T to Option[T] be added/created in Scala?

Is this an opportunity to make things a bit more efficient (for the prorammer): I find it gets a bit tiresome having to wrap things in Some, e.g. Some(5). What about something like this:
implicit def T2OptionT( x : T) : Option[T] = if ( x == null ) None else Some(x)
You would lose some type safety and possibly cause confusion.
For example:
val iThinkThisIsAList = 2
for (i <- iThinkThisIsAList) yield { i + 1 }
I (for whatever reason) thought I had a list, and it didn't get caught by the compiler when I iterated over it because it was auto-converted to an Option[Int].
I should add that I think this is a great implicit to have explicitly imported, just probably not a global default.
Note that you could use the explicit implicit pattern which would avoid confusion and keep code terse at the same time.
What I mean by explicit implicit is rather than have a direct conversion from T to Option[T] you could have a conversion to a wrapper object which provides the means to do the conversion from T to Option[T].
class Optionable[T <: AnyRef](value: T) {
def toOption: Option[T] = if ( value == null ) None else Some(value)
}
implicit def anyRefToOptionable[T <: AnyRef](value: T) = new Optionable(value)
... I might find a better name for it than Optionable, but now you can write code like:
val x: String = "foo"
x.toOption // Some("foo")
val y: String = null
x.toOption // None
I believe that this way is fully transparent and aids in the understanding of the written code - eliminating all checks for null in a nice way.
Note the T <: AnyRef - you should only do this implicit conversion for types that allow null values, which by definition are reference types.
The general guidelines for implicit conversions are as follows:
When you need to add members to a type (a la "open classes"; aka the "pimp my library" pattern), convert to a new type which extends AnyRef and which only defines the members you need.
When you need to "correct" an inheritance hierarchy. Thus, you have some type A which should have subclassed B, but didn't for some reason. In that case, you can define an implicit conversion from A to B.
These are the only cases where it is appropriate to define an implicit conversion. Any other conversion runs into type safety and correctness issues in a hurry.
It really doesn't make any sense for T to extend Option[T], and obviously the purpose of the conversion is not simply the addition of members. Thus, such a conversion would be inadvisable.
It would seem that this could be confusing to other developers, as they read your code.
Generally, it seems, implicit works to help cast from one object to another, to cut out confusing casting code that can clutter code, but, if I have some variable and it somehow becomes a Some then that would seem to be bothersome.
You may want to put some code showing it being used, to see how confusing it would be.
You could also try to overload the method :
def having(key:String) = having(key, None)
def having(key:String, default:String) = having(key, Some(default))
def having(key: String, default: Option[String]=Option.empty) : Create = {
keys += ( (key, default) )
this
}
That looks good to me, except it may not work for a primitive T (which can't be null). I guess a non-specialized generic always gets boxed primitives, so probably it's fine.