I'm debugging a DB performance issue. There's a lead that the issue was introduced after a certain deploy, e.g. when DB started to serve some new queries.
I'm looking to correlate deployment time with the performance issues, and would like to identify the queries that are causing this.
Using pg_stat_statements has been very handy so far. Unfortunately it does not store the time stamp of the first occurrence of each query.
Is there any auxiliary tables I could look into to see the time of first occurrence of queries?
Ideally, if this information would have been available in pg_stat_statements, I'd make a query like this:
select queryid from where date(first_run) = '2020-04-01';
Additionally, it'd be cool to see last_run as well, so to filter out some old queries that no longer execute at all, but remain in pg_stat_statements. That's more of a nice thing that's a necessity though.
This information is not stored anywhere, and indeed it would not be very useful. If the problem statement is a new one, you can easily identify it in your application code. If it is not a new statement, but something made the query slower, the first time the query was executed won't help you.
Is your source code not under version control?
Been working on a module that is working pretty well when using MySQL, but when I try and run the unit tests I get an error when testing under PostgreSQL (using Travis).
The module itself is here: https://github.com/silvercommerce/taxable-currency
An example failed build is here: https://travis-ci.org/silvercommerce/taxable-currency/jobs/546838724
I don't have a huge amount of experience using PostgreSQL, but I am not really sure why this might be happening? The only thing I could think that might cause this is that I am trying to manually set the ID's in my fixtures file and maybe PostgreSQL not support this?
If this is not the case, does anyone have an idea what might be causing this issue?
Edit: I have looked again into this and the errors appear to be because of this assertion, which should be finding the Tax Rate vat but instead finds the Tax Rate reduced
I am guessing there is an issue in my logic that is causing the incorrect rate to be returned, though I am unsure why...
In the end it appears that Postgres has different default sorting to MySQL (https://www.postgresql.org/docs/9.1/queries-order.html). The line of interest is:
The actual order in that case will depend on the scan and join plan types and the order on disk, but it must not be relied on
In the end I didn't really need to test a list with multiple items, so instead I just removed the additional items.
If you are working on something that needs to support MySQL and Postgres though, you might need to consider defining a consistent sort order as part of your query.
I have started creating a product database using timestamp without timezone. Then, realizing my error, I started using timestamp with timezone. Now I'd like to unify this to the latter.
Question: Is it possible in an existing Postgres 8.4 DB already containing data to convert all the columns of type timestamp without TZ to ones with TZ?
The best solution would be a script that would do this in one execution (of course). Even a script that would fix a single column at a time would be great. The problem is that a naïve ALTERing the column fails on some existing VIEWs that use it in output (though I fail to see why it is bad in this case - it's just widening the output type a bit).
You want ALTER TABLE ... ALTER COLUMN ... TYPE ... USING (...) which does what you would expect. You will need to decide what timezone these times are in, and supply the suitable AT TIME ZONE expression for your USING clause.
These will ALTERs will rewrite each table, so allow for that. You may want to CLUSTER them afterwards.
However, you seem to think that the two types are interchangeable. They are not. That is why you need to drop and rebuild your views. Also you will want to rewrite any applications appropriately too.
If you can't see why they are different, make a good hot cup of tea or coffee, sit down and read the time & date sections of the manuals and spend an hour or so reading them thoroughly. Perhaps some of the Q&As here too. This is not necesarily a minor change. I'd be especially wary of any daylight-saving / Summer shifts in whatever time zone(s) you decide apply.
How Would I verify that the data in a 8.3 postgresql DB is the same as the data in a 9.0 DB
When I did a sql dump on a example table there we3re many differences that showed but this was due to 9.0 truncating 0's on the end and begining of date fields, also the order of the dump was not fixed, even though this can be sorted with sort(no pun intended). it does not allow validation as it would loose what table it was part of as the sorted sql dump would be a meaningless splat of sql commands with dump settings thrown in for extra.
count(*) is also not adequate.
I would like to be 100% sure that the data in one is equal to the data in the other despite the version differences and the way that at the very least dates are held in 9.0.
I should add I have several hundred tables and many hundred GB of data. so i need a automated process like diff DUMPa.sql DUMP2.sql, a SHA of the data(not the format) would be idea, but one cannot diff binary dumps of PostgreSQL for well known reasons. I am aware mysql has a checksum feature, but im using postgresql.
First the bad news. There is really no way to offer the full concerns you want addressed without loading all the data into an intermediary program and directly comparing. This will take time and it will drag your system down load-wise so my recommendation is set up some sort of replication and compare replicas.
One thing you might be able to do is to use something like Slony or Bucardo to replicate, and then triggers to move data into secondary child partitions and replicate those onto a consolidated server for comparison. You could then compare within PostgreSQL. This would reduce the load and it would mean your reporting data would be relatively easy to manage compared to other approaches. But all the data is going to have to be loaded and compared line-by-line.
My Data
It's primarily monitoring data, passed in the form of Timestamp: Value, for each monitored value, on each monitored appliance. It's regularly collected over many appliances and many monitored values.
Additionally, it has the quirky feature of many of these data values being derived at the source, with the calculation changing from time to time. This means that my data is effectively versioned, and I need to be able to simply call up only data from the most recent version of the calculation. Note: This is not versioning where the old values are overwritten. I simply have timestamp cutoffs, beyond which the data changes its meaning.
My Usage
Downstream, I'm going to have various undefined data mining/machine learning uses for the data. It's not really clear yet what those uses are, but it is clear that I will be writing all of the downstream code in Python. Also, we are a very small shop, so I can really only deal with so much complexity in setup, maintenance, and interfacing to downstream applications. We just don't have that many people.
The Choice
I am not allowed to use a SQL RDBMS to store this data, so I have to find the right NoSQL solution. Here's what I've found so far:
Cassandra
Looks totally fine to me, but it seems like some of the major users have moved on. It makes me wonder if it's just not going to be that much of a vibrant ecosystem. This SE post seems to have good things to say: Cassandra time series data
Accumulo
Again, this seems fine, but I'm concerned that this is not a major, actively developed platform. It seems like this would leave me a bit starved for tools and documentation.
MongoDB
I have a, perhaps irrational, intense dislike for the Mongo crowd, and I'm looking for any reason to discard this as a solution. It seems to me like the data model of Mongo is all wrong for things with such a static, regular structure. My data even comes in (and has to stay in) order. That said, everybody and their mother seems to love this thing, so I'm really trying to evaluate its applicability. See this and many other SE posts: What NoSQL DB to use for sparse Time Series like data?
HBase
This is where I'm currently leaning. It seems like the successor to Cassandra with a totally usable approach for my problem. That said, it is a big piece of technology, and I'm concerned about really knowing what it is I'm signing up for, if I choose it.
OpenTSDB
This is basically a time-series specific database, built on top of HBase. Perfect, right? I don't know. I'm trying to figure out what another layer of abstraction buys me.
My Criteria
Open source
Works well with Python
Appropriate for a small team
Very well documented
Has specific features to take advantage of ordered time series data
Helps me solve some of my versioned data problems
So, which NoSQL database actually can help me address my needs? It can be anything, from my list or not. I'm just trying to understand what platform actually has code, not just usage patterns, that support my super specific, well understood needs. I'm not asking which one is best or which one is cooler. I'm trying to understand which technology can most natively store and manipulate this type of data.
Any thoughts?
It sounds like you are describing one of the most common use cases for Cassandra. Time series data in general is often a very good fit for the cassandra data model. More specifically many people store metric/sensor data like you are describing. See:
http://rubyscale.com/blog/2011/03/06/basic-time-series-with-cassandra/
http://www.datastax.com/dev/blog/advanced-time-series-with-cassandra
http://engineering.rockmelt.com/post/17229017779/modeling-time-series-data-on-top-of-cassandra
As far as your concerns with the community I'm not sure what is giving you that impression, but there is quite a large community (see irc, mailing lists) as well as a growing number of cassandra users.
http://www.datastax.com/cassandrausers
Regarding your criteria:
Open source
Yes
Works well with Python
http://pycassa.github.com/pycassa/
Appropriate for a small team
Yes
Very well documented
http://www.datastax.com/docs/1.1/index
Has specific features to take advantage of ordered time series data
See above links
Helps me solve some of my versioned data problems
If I understand your description correctly you could solve this multiple ways. You could start writing a new row when the version changes. Alternatively you could use composite columns to store the version along with the timestamp/value pair.
I'll also note that Accumulo, HBase, and Cassandra all have essentially the same data model. You will still find small differences around the data model in regards to specific features that each database offers, but the basics will be the same.
The bigger difference between the three will be the architecture of the system. Cassandra takes its architecture from Amazon's Dynamo. Every server in the cluster is the same and it is quite simple to setup. HBase and Accumulo or more direct clones of BigTable. These have more moving parts and will require more setup/types of servers. For example, setting up HDFS, Zookeeper, and HBase/Accumulo specific server types.
Disclaimer: I work for DataStax (we work with Cassandra)
I only have experience in Cassandra and MongoDB but my experience might add something.
So your basically doing time based metrics?
Ok if I understand right you use the timestamp as a versioning mechanism so that you query per a certain timestamp, say to get the latest calculation used you go based on the metric ID or whatever and get ts DESC and take off the first row?
It sounds like a versioned key value store at times.
With this in mind I probably would not recommend either of the two I have used.
Cassandra is too rigid and it's too heirachal, too based around how you query to the point where you can only make one pivot of graph data from (I presume you would wanna graph these metrics) the columfamily which is crazy, hence why I dropped it. As for searching (which Facebook use it for, and only that) it's not that impressive either.
MongoDB, well I love MongoDB and I am an elite of the user group and it could work here if you didn't use a key value storage policy but at the end of the day if your mind is not set and you don't like the tech then let me be the very first to say: don't use it! You will be no good at a tech that you don't like so stay away from it.
Though I would picture this happening in Mongo much like:
{
_id: ObjectID(),
metricId: 'AvailableMessagesInQueue',
formula: '4+5/10.01',
result: NaN
ts: ISODate()
}
And you query for the latest version of your calculation by:
var results = db.metrics.find({ 'metricId': 'AvailableMessagesInQueue' }).sort({ ts: -1 });
var latest = results.getNext();
Which would output the doc structure you see above. Without knowing more of exactly how you wish to query and the general servera and app scenario etc thats the best I can come up with.
I fond this thread on HBase though: http://mail-archives.apache.org/mod_mbox/hbase-user/201011.mbox/%3C5A76F6CE309AD049AAF9A039A39242820F0C20E5#sc-mbx04.TheFacebook.com%3E
Which might be of interest, it seems to support the argument that HBase is a good time based key value store.
I have not personally used HBase so do not take anything I say about it seriously....
I hope I have added something, if not you could try narrowing your criteria so we can answer more dedicated questions.
Hope it helps a little,
Not a plug for any particular technology but this article on Time Series storage using MongoDB might provide another way of thinking about the storage of large amounts of "sensor" data.
http://www.10gen.com/presentations/mongodc-2011/time-series-data-storage-mongodb
Axibase Time-Series Database
Open source
There is a free Community Edition
Works well with Python
https://github.com/axibase/atsd-api-python. There are also other language wrappers, for example ATSD R client.
Appropriate for a small team
Built-in graphics and rule engine make it productive for building an in-house reporting, dashboarding, or monitoring solution with less coding.
Very well documented
It's hard to beat IBM redbooks, but we're trying. API, configuration, and administration is documented in detail and with examples.
Has specific features to take advantage of ordered time series data
It's a time-series database from the ground-up so aggregation, filtering and non-parametric ARIMA and HW forecasts are available.
Helps me solve some of my versioned data problems
ATSD supports versioned time-series data natively in SE and EE editions. Versions keep track of status, change-time and source changes for the same timestamp for audit trails and reconciliations. It's a useful feature to have if you need clean, verified data with tracing. Think energy metering, PHMR records. ATSD schema also supports series tags, which you could use to store versioning columns manually if you're on CE edition or you need to extend default versioning columns: status, source, change-time.
Disclosure - I work for the company that develops ATSD.