Is there any way to add perturbation to a variable in Matlab? - matlab

I have a 101x82 size matrix called A. I am trying to minimize an objective function obj_fun, whose value is computed indirectly using A.
Now in order to minimize this objective function obj_fun, I need to perturb the values of A. I want to check if obj_fun is going down in values or not. If not, then I need to do perturb/change values of A to a certain percentage such that it minimizes obj_fun. Keep on perturbing/changing values of A until we get minimum obj_fun. My average value of A before any perturbation is ~ 1.1529e+003.
Does any one have suggestion how can I do this? Also, I care a bit about speed i.e. the method/algorithm should not be too slow. Thanks.

You can add random Gaussian noise to A:
A = 0; % seed value for A with something more interesting than 0
best = obj_fun(A);
for iter = 1:max_iter % max_iter should be the maximum number of iterations
newA = A + normrnd(0, 1, size(A));
newObj = obj_fun(A);
if( newObj < best )
best = newObj;
A = newA;
end
end

Related

Verify Law of Large Numbers in MATLAB

The problem:
If a large number of fair N-sided dice are rolled, the average of the simulated rolls is likely to be close to the mean of 1,2,...N i.e. the expected value of one die. For example, the expected value of a 6-sided die is 3.5.
Given N, simulate 1e8 N-sided dice rolls by creating a vector of 1e8 uniformly distributed random integers. Return the difference between the mean of this vector and the mean of integers from 1 to N.
My code:
function dice_diff = loln(N)
% the mean of integer from 1 to N
A = 1:N
meanN = sum(A)/N;
% I do not have any idea what I am doing here!
V = randi(1e8);
meanvector = V/1e8;
dice_diff = meanvector - meanN;
end
First of all, make sure everytime you ask a question that it is as clear as possible, to make it easier for other users to read.
If you check how randi works, you can see this:
R = randi(IMAX,N) returns an N-by-N matrix containing pseudorandom
integer values drawn from the discrete uniform distribution on 1:IMAX.
randi(IMAX,M,N) or randi(IMAX,[M,N]) returns an M-by-N matrix.
randi(IMAX,M,N,P,...) or randi(IMAX,[M,N,P,...]) returns an
M-by-N-by-P-by-... array. randi(IMAX) returns a scalar.
randi(IMAX,SIZE(A)) returns an array the same size as A.
So, if you want to use randi in your problem, you have to use it like this:
V=randi(N, 1e8,1);
and you need some more changes:
function dice_diff = loln(N)
%the mean of integer from 1 to N
A = 1:N;
meanN = mean(A);
V = randi(N, 1e8,1);
meanvector = mean(V);
dice_diff = meanvector - meanN;
end
For future problems, try using the command
help randi
And matlab will explain how the function randi (or other function) works.
Make sure to check if the code above gives the desired result
As pointed out, take a closer look at the use of randi(). From the general case
X = randi([LowerInt,UpperInt],NumRows,NumColumns); % UpperInt > LowerInt
you can adapt to dice rolling by
Rolls = randi([1 NumSides],NumRolls,NumSamplePaths);
as an example. Exchanging NumRolls and NumSamplePaths will yield Rolls.', or transpose(Rolls).
According to the Law of Large Numbers, the updated sample average after each roll should converge to the true mean, ExpVal (short for expected value), as the number of rolls (trials) increases. Notice that as NumRolls gets larger, the sample mean converges to the true mean. The image below shows this for two sample paths.
To get the sample mean for each number of dice rolls, I used arrayfun() with
CumulativeAvg1 = arrayfun(#(jj)mean(Rolls(1:jj,1)),[1:NumRolls]);
which is equivalent to using the cumulative sum, cumsum(), to get the same result.
CumulativeAvg1 = (cumsum(Rolls(:,1))./(1:NumRolls).'); % equivalent
% MATLAB R2019a
% Create Dice
NumSides = 6; % positive nonzero integer
NumRolls = 200;
NumSamplePaths = 2;
% Roll Dice
Rolls = randi([1 NumSides],NumRolls,NumSamplePaths);
% Output Statistics
ExpVal = mean(1:NumSides);
CumulativeAvg1 = arrayfun(#(jj)mean(Rolls(1:jj,1)),[1:NumRolls]);
CumulativeAvgError1 = CumulativeAvg1 - ExpVal;
CumulativeAvg2 = arrayfun(#(jj)mean(Rolls(1:jj,2)),[1:NumRolls]);
CumulativeAvgError2 = CumulativeAvg2 - ExpVal;
% Plot
figure
subplot(2,1,1), hold on, box on
plot(1:NumRolls,CumulativeAvg1,'b--','LineWidth',1.5,'DisplayName','Sample Path 1')
plot(1:NumRolls,CumulativeAvg2,'r--','LineWidth',1.5,'DisplayName','Sample Path 2')
yline(ExpVal,'k-')
title('Average')
xlabel('Number of Trials')
ylim([1 NumSides])
subplot(2,1,2), hold on, box on
plot(1:NumRolls,CumulativeAvgError1,'b--','LineWidth',1.5,'DisplayName','Sample Path 1')
plot(1:NumRolls,CumulativeAvgError2,'r--','LineWidth',1.5,'DisplayName','Sample Path 2')
yline(0,'k-')
title('Error')
xlabel('Number of Trials')

Metropolis-Hastings in matlab

I am trying to use the Metropolis Hastings algorithm with a random walk sampler to simulate samples from a function $$ in matlab, but something is wrong with my code. The proposal density is the uniform PDF on the ellipse 2s^2 + 3t^2 ≤ 1/4. Can I use the acceptance rejection method to sample from the proposal density?
N=5000;
alpha = #(x1,x2,y1,y2) (min(1,f(y1,y2)/f(x1,x2)));
X = zeros(2,N);
accept = false;
n = 0;
while n < 5000
accept = false;
while ~accept
s = 1-rand*(2);
t = 1-rand*(2);
val = 2*s^2 + 3*t^2;
% check acceptance
accept = val <= 1/4;
end
% and then draw uniformly distributed points checking that u< alpha?
u = rand();
c = u < alpha(X(1,i-1),X(2,i-1),X(1,i-1)+s,X(2,i-1)+t);
X(1,i) = c*s + X(1,i-1);
X(2,i) = c*t + X(2,i-1);
n = n+1;
end
figure;
plot(X(1,:), X(2,:), 'r+');
You may just want to use the native implementation of matlab mhsample.
Regarding your code, there are a few things missing:
- function alpha,
- loop variable i (it might be just n but it is not suited for indexing since it starts at zero).
And you should always allocate memory in matlab if you want to fill it dynamically, i.e. X in your case.
To expand on the suggestions by #max, the code appears to work if you change the i indices to n and replace
n = 0;
with
n = 2;
X(:,1) = [.1,.1];
It would probably be better to assign X(:,1) to random values within your accept region (using the same code you use later), and/or include a burn-in period.
Depending upon what you are going to do with this, it may also make things cleaner to evaluate the argument to sin in the f function to keep it within 0 to 2 pi (likely by shifting the value by 2 pi if it exceeds those bounds)

dynamically fill vector without assigning empty matrix

Oftentimes I need to dynamically fill a vector in Matlab. However this is sligtly annoying since you first have to define an empty variable first, e.g.:
[a,b,c]=deal([]);
for ind=1:10
if rand>.5 %some random condition to emphasize the dynamical fill of vector
a=[a, randi(5)];
end
end
a %display result
Is there a better way to implement this 'push' function, so that you do not have to define an empty vector beforehand? People tell me this is nonsensical in Matlab- if you think this is the case please explain why.
related: Push a variable in a vector in Matlab, is-there-an-elegant-way-to-create-dynamic-array-in-matlab
In MATLAB, pre-allocation is the way to go. From the docs:
for and while loops that incrementally increase the size of a data structure each time through the loop can adversely affect performance and memory use.
As pointed out in the comments by m7913d, there is a question on MathWorks' answers section which addresses this same point, read it here.
I would suggest "over-allocating" memory, then reducing the size of the array after your loop.
numloops = 10;
a = nan(numloops, 1);
for ind = 1:numloops
if rand > 0.5
a(ind) = 1; % assign some value to the current loop index
end
end
a = a(~isnan(a)); % Get rid of values which weren't used (and remain NaN)
No, this doesn't decrease the amount you have to write before your loop, it's even worse than having to write a = []! However, you're better off spending a few extra keystrokes and minutes writing well structured code than making that saving and having worse code.
It is (as for as I known) not possible in MATLAB to omit the initialisation of your variable before using it in the right hand side of an expression. Moreover it is not desirable to omit it as preallocating an array is almost always the right way to go.
As mentioned in this post, it is even desirable to preallocate a matrix even if the exact number of elements is not known. To demonstrate it, a small benchmark is desirable:
Ns = [1 10 100 1000 10000 100000];
timeEmpty = zeros(size(Ns));
timePreallocate = zeros(size(Ns));
for i=1:length(Ns)
N = Ns(i);
timeEmpty(i) = timeit(#() testEmpty(N));
timePreallocate(i) = timeit(#() testPreallocate(N));
end
figure
semilogx(Ns, timeEmpty ./ timePreallocate);
xlabel('N')
ylabel('time_{empty}/time_{preallocate}');
% do not preallocate memory
function a = testEmpty (N)
a = [];
for ind=1:N
if rand>.5 %some random condition to emphasize the dynamical fill of vector
a=[a, randi(5)];
end
end
end
% preallocate memory with the largest possible return size
function a = testPreallocate (N)
last = 0;
a = zeros(N, 1);
for ind=1:N
if rand>.5 %some random condition to emphasize the dynamical fill of vector
last = last + 1;
a(last) = randi(5);
end
end
a = a(1:last);
end
This figure shows how much time the method without preallocating is slower than preallocating a matrix based on the largest possible return size. Note that preallocating is especially important for large matrices due the the exponential behaviour.

MATLAB Piecewise function

I have to construct the following function in MATLAB and am having trouble.
Consider the function s(t) defined for t in [0,4) by
{ sin(pi*t/2) , for t in [0,1)
s(t) = { -(t-2)^3 , for t in [1,3)*
{ sin(pi*t/2) , for t in [3,4)
(i) Generate a column vector s consisting of 512 uniform
samples of this function over the interval [0,4). (This
is best done by concatenating three vectors.)
I know it has to be something of the form.
N = 512;
s = sin(5*t/N).' ;
But I need s to be the piecewise function, can someone provide assistance with this?
If I understand correctly, you're trying to create 3 vectors which calculate the specific function outputs for all t, then take slices of each and concatenate them depending on the actual value of t. This is inefficient as you're initialising 3 times as many vectors as you actually want (memory), and also making 3 times as many calculations (CPU), most of which will just be thrown away. To top it off, it'll be a bit tricky to use concatenate if your t is ever not as you expect (i.e. monotonically increasing). It might be an unlikely situation, but better to be general.
Here are two alternatives, the first is imho the nice Matlab way, the second is the more conventional way (you might be more used to that if you're coming from C++ or something, I was for a long time).
function example()
t = linspace(0,4,513); % generate your time-trajectory
t = t(1:end-1); % exclude final value which is 4
tic
traj1 = myFunc(t);
toc
tic
traj2 = classicStyle(t);
toc
end
function trajectory = myFunc(t)
trajectory = zeros(size(t)); % since you know the size of your output, generate it at the beginning. More efficient than dynamically growing this.
% you could put an assert for t>0 and t<3, otherwise you could end up with 0s wherever t is outside your expected range
% find the indices for each piecewise segment you care about
idx1 = find(t<1);
idx2 = find(t>=1 & t<3);
idx3 = find(t>=3 & t<4);
% now calculate each entry apprioriately
trajectory(idx1) = sin(pi.*t(idx1)./2);
trajectory(idx2) = -(t(idx2)-2).^3;
trajectory(idx3) = sin(pi.*t(idx3)./2);
end
function trajectory = classicStyle(t)
trajectory = zeros(size(t));
% conventional way: loop over each t, and differentiate with if-else
% works, but a lot more code and ugly
for i=1:numel(t)
if t(i)<1
trajectory(i) = sin(pi*t(i)/2);
elseif t(i)>=1 & t(i)<3
trajectory(i) = -(t(i)-2)^3;
elseif t(i)>=3 & t(i)<4
trajectory(i) = sin(pi*t(i)/2);
else
error('t is beyond bounds!')
end
end
end
Note that when I tried it, the 'conventional way' is sometimes faster for the sampling size you're working on, although the first way (myFunc) is definitely faster as you scale up really a lot. In anycase I recommend the first approach, as it is much easier to read.

Matlab unique function

I'm struggling with determining the probability of occurrence of unique elements in thresh_strain matrix (which can be seen below as a 100 x 16). I was trying to use the code at the bottom to do this, but I get an equal probability of occurrence associated with each of the elements, whereas I want the probability of occurrence associated with unique elements in thresh_strain.
function [thresh_strain] = MCsolution()
no_iterations = 100;
thresh_strain = zeros(100, 16);
casechoice =input('Enter 1 for 1st Layup and 2 for 2nd layup:');
for i=1:no_iterations
for j=1:16
J = Nielsennew(casechoice);
thresh_strain(i,j) = J(1, j);
end
end
% [uniqueValues,~,uniqueIndex] = unique(thresh_strain);
% frequency = accumarray(uniqueIndex(:),1)./numel(thresh_strain);
Thanks
It is not really clear from the title and description, but I suppose you may be looking for something like this:
myUniqueValues = unique(myMatrix);
nelements = hist(myMatrix(:),myUniqueValues);
%plot(myUniqueValues,nelements)
Basically calculating how often each unique value occurs. From here getting the corresponding percentage is of course trivial.