Methods to speed up for loop in MATLAB - matlab

I have just profiled my MATLAB code and there is a bottle-neck in this for loop:
for vert=-down:up
for horz=-lhs:rhs
y = y + x(k+vert.*length+horz).*DM(abs(vert).*nu+abs(horz)+1);
end
end
where y, x and DM are vectors I have already defined. I vectorised the loop by writing,
B=(-down:up)'*ones(1,lhs+rhs+1);
C=ones(up+down+1,1)*(-lhs:rhs);
y = sum(sum(x(k+length.*B+C).*DM(abs(B).*nu+abs(C)+1)));
But this ended up being sufficiently slower.
Are there any suggestions on how I can speed up this for loop?
Thanks in advance.

What you've done is not really vectorization. It's very difficult, if not impossible, to write proper vectorization procedures for image processing (I assume that's what you're doing) in Matlab. When we use the term vectorized, we really mean "vectorized with no additional computation". For example, this code
a = 1:1000000;
for i = a
n = n+i;
end
would run much slower then this code
a = 1:1000000;
sum(a)
Update: code above has been modified, thanks to #Rasman's keen suggestion. The reason is that Matlab does not compile your code into machine language before running it, and that's what causes it to be slower. Built-in functions like sum, mean and the .* operator run pre-compiled C code behind the scenes. For loops are a great example of code that runs slowly when not optimized for you CPU's registers.
What you have done, and please ignore my first comment, is rewriting your procedure with a vector operation and some additional operations. Those are the operations that take extra CPU simply because you're telling your computer to do more computations, even though each computation separately may (or may not) take less time.
If you are really after speeding up you code, take a look at MEX files. They allow you to write and compile C and C++ code, compile it and run as Matlab functions, just like those fast built-in ones. In any case, Matlab is not meant to be a fast general-purpose programming platform, but rather a computer simulation environment, though this approach has been changing in the recent years. My advise (from experience) is that if you do image processing, you will write for loops, and there's rarely a way around it. Vector operations were written for a more intuitive approach to linear algebra problems, and we rarely treat digital images as regular rectangular matrices in terms of what we do with them.
I hope this helps.

I would use matrices when handling images... you could then try to extract submatrices like so:
X = reshape(x,height,length);
kx = mod(k,length);
ky = floor(k/length);
xstamp = X( [kx-down:kx+up], [ky-lhs:ky+rhs]);
xstamp = xstamp.*getDMMMask(width, height);
y = sum(xstamp);
...
function mask = getDMMask(width, height, nu)
% I don't get what you're doing there .. return an appropriate sized mask here.
return mask;
end

Related

Replace two for loops using vectorization?

I have a function f(x,y) = abs(cos(x+3) * sin(y+2)) that I need to sum up using two for loops. Note: the real function is more complex, this is a toy version of it for the purposes of the question.
f = #(x,y) abs(cos(x+3) * sin(y+2));
tot = 0;
for m=1:100
for n=1:100
tot = tot + f(m,n);
end
end
disp(tot)
Output: 4.026314876227891e+03
How can I vectorize this code to get rid of the for loops and make it faster?
[n,m]=meshgrid(1:100,1:100);
tot=sum(f(m,n),'all')
However I am not sure this is any faster, you can time it. Matlab is quite fast in loops, the old truth about it being slower when you loop is outdated by 5 years or so. Most of the times the JIT compiler will find the fastest way to run it. This is one of the cases where your toy problem may hid the actual problem, as the JIT may find this toy problem easier to speed up, but not your real one, or vice versa.
You will need to time.

Vectorising 3d array

I am trying to vectorise a for loop. I have a set of coordinates listed in a [68x200] matrix called plt2, and I have another set of coordinates listed in a [400x1] matrix called trans1. I want to create a three dimensional array called dist1, where in dist1(:,:,1) I have all of the values of plt2 with the first value of trans1 subtracted, all the way through to the end of trans1. I have a for loop like this which works but is very slow:
for i=1:source_points;
dist1(:,:,i)=plt2-trans1(i,1);
end
Thanks for any help.
If I understood correctly, this can be easily solved with bsxfun:
dist1 = bsxfun(#minus, plt2, shiftdim(trans1,-2));
Or, if speed is important, use this equivalent version (thanks to #chappjc), which seems to be much faster:
dist1 = bsxfun(#minus, plt2, reshape(trans1,1,1,[]));
In general, bsxfun is a very useful function for cases like this. Its behaviour can be summarized as follows: for any singleton dimension of any of its two input arrays, it applies an "implicit" for loop to the other array along the same dimension. See the doc for further details.
Vectorizing is a good first optimization, and is usually much easier than going all in writing your own compiled mex-function (in c).
However, the golden middle-way for power users is Matlab Coder (this also applies to slightly harder problems than the one posted, where vectorization is more or less impossible). First, create a small m-file function around the slow code, in your case:
function dist1 = do_some_stuff(source_points,dist1,plt2,trans1)
for i=1:source_points;
dist1(:,:,i)=plt2-trans1(i,1);
end
Then create a simple wrapper function which calls do_some_stuff as well as defines the inputs. This file should really be only 5 rows, with only the bare essentials needed. Matlab Coder uses the wrapper function to understand what typical proper inputs to do_some_stuff are.
You can now fire up the Matlab Coder gui from the Apps section and simply add do_some_stuff under Entry-Point Files. Press Autodefine types and select your wrapper function. Go to build and press build, and you are good to go! This approach usually bumps up the execution speed substantially with almost no effort.
BR
Magnus

Avoiding loops in MatLab code (barycentric weights)

After having learned basic programming in Java, I have found that the most difficult part of transitioning to MatLab for my current algorithm course, is to avoid loops. I know that there are plenty of smart ways to vectorize operations in MatLab, but my mind is so "stuck" in loop-thinking, that I am finding it hard to intuitively see how I may vectorize code. Once I am shown how it can be done, it makes sense to me, but I just don't see it that easily myself. Currently I have the following code for finding the barycentric weights used in Lagrangian interpolation:
function w = barycentric_weights(x);
% The function is used to find the weights of the
% barycentric formula based on a given grid as input.
n = length(x);
w = zeros(1,n);
% Calculating the weights
for i = 1:n
prod = 1;
for j = 1:n
if i ~= j
prod = prod*(x(i) - x(j));
end
end
w(i) = prod;
end
w = 1./w;
I am pretty sure there must be a smarter way to do this in MatLab, but I just can't think of it. If anyone has any tips I will be very grateful :). And the only way I'll ever learn all the vectorizing tricks in MatLab is to see how they are used in various scenarios such as above.
One has to be creative in matlab to avoid for loop:
[X,Y] =meshgrid(x,x)
Z = X - Y
w =1./prod(Z+eye(length(x)))
Kristian, there are a lot of ways to vectorize code. You've already gotten two. (And I agree with shakinfree: you should always consider 1) how long it takes to run in non-vectorized form (so you'll have an idea of how much time you might save by vectorizing); 2) how long it might take you to vectorize (so you'll have a better sense of whether or not it's worth your time; 3) how many times you will call it (again: is it worth doing); and 3) readability. As shakinfree suggests, you don't want to come back to your code a year from now and scratch your head about what you've implemented. At least make sure you've commented well.
But at a meta-level, when you decide that you need to improve runtime performance by vectorizing, first start with small (3x1 ?) array and make sure you understand exactly what's happening for each iteration. Then, spend some time reading this document, and following relevant links:
http://www.mathworks.com/help/releases/R2012b/symbolic/code-performance.html
It will help you determine when and how to vectorize.
Happy MATLABbing!
Brett
I can see the appeal of vectorization, but I often ask myself how much time it actually saves when I go back to the code a month later and have to decipher all that repmat gibberish. I think your current code is clean and clear and I wouldn't mess with it unless performance is really critical. But to answer your question here is my best effort:
function w = barycentric_weights_vectorized(x)
n = length(x);
w = 1./prod(eye(n) + repmat(x,n,1) - repmat(x',1,n),1);
end
Hope that helps!
And I am assuming x is a row vector here.

Replacement for repmat in MATLAB

I have a function which does the following loop many, many times:
for cluster=1:max(bins), % bins is a list in the same format as kmeans() IDX output
select=bins==cluster; % find group of values
means(select,:)=repmat_fast_spec(meanOneIn(x(select,:)),sum(select),1);
% (*, above) for each point, write the mean of all points in x that
% share its label in bins to the equivalent row of means
delta_x(select,:)=x(select,:)-(means(select,:));
%subtract out the mean from each point
end
Noting that repmat_fast_spec and meanOneIn are stripped-down versions of repmat() and mean(), respectively, I'm wondering if there's a way to do the assignment in the line labeled (*) that avoids repmat entirely.
Any other thoughts on how to squeeze performance out of this thing would also be welcome.
Here is a possible improvement to avoid REPMAT:
x = rand(20,4);
bins = randi(3,[20 1]);
d = zeros(size(x));
for i=1:max(bins)
idx = (bins==i);
d(idx,:) = bsxfun(#minus, x(idx,:), mean(x(idx,:)));
end
Another possibility:
x = rand(20,4);
bins = randi(3,[20 1]);
m = zeros(max(bins),size(x,2));
for i=1:max(bins)
m(i,:) = mean( x(bins==i,:) );
end
dd = x - m(bins,:);
One obvious way to speed up calculation in MATLAB is to make a MEX file. You can compile C code and perform any operations you want. If you're searching for the fastest-possible performance, turning the operation into a custom MEX file would likely be the way to go.
You may be able to get some improvement by using ACCUMARRAY.
%# gather array sizes
[nPts,nDims] = size(x);
nBins = max(bins);
%# calculate means. Not sure whether it might be faster to loop over nDims
meansCell = accumarray(bins,1:nPts,[nBins,1],#(idx){mean(x(idx,:),1)},{NaN(1,nDims)});
means = cell2mat(meansCell);
%# subtract cluster means from x - this is how you can avoid repmat in your code, btw.
%# all you need is the array with cluster means.
delta_x = x - means(bins,:);
First of all: format your code properly, surround any operator or assignment by whitespace. I find your code very hard to comprehend as it looks like a big blob of characters.
Next of all, you could follow the other responses and convert the code to C (mex) or Java, automatically or manually, but in my humble opinion this is a last resort. You should only do such things when your performance is not there yet by a small margin. On the other hand, your algorithm doesn't show obvious flaws.
But the first thing you should do when trying to improve performance: profile. Use the MATLAB profiler to determine which part of your code is causing your problems. How much would you need to improve this to meet your expectations? If you don't know: first determine this boundary, otherwise you will be looking for a needle in a hay stack which might not even be in there in the first place. MATLAB will never be the fastest kid on the block with respect to runtime, but it might be the fastest with respect to development time for certain kinds of operations. In that respect, it might prove useful to sacrifice the clarity of MATLAB over the execution speed of other languages (C or even Java). But in the same respect, you might as well code everything in assembler to squeeze all of the performance out of the code.
Another obvious way to speed up calculation in MATLAB is to make a Java library (similar to #aardvarkk's answer) since MATLAB is built on Java and has very good integration with user Java libraries.
Java's easier to interface and compile than C. It might be slower than C in some cases, but the just-in-time (JIT) compiler in the Java virtual machine generally speeds things up very well.

Parallelize or vectorize all-against-all operation on a large number of matrices?

I have approximately 5,000 matrices with the same number of rows and varying numbers of columns (20 x ~200). Each of these matrices must be compared against every other in a dynamic programming algorithm.
In this question, I asked how to perform the comparison quickly and was given an excellent answer involving a 2D convolution. Serially, iteratively applying that method, like so
list = who('data_matrix_prefix*')
H = cell(numel(list),numel(list));
for i=1:numel(list)
for j=1:numel(list)
if i ~= j
eval([ 'H{i,j} = compare(' char(list(i)) ',' char(list(j)) ');']);
end
end
end
is fast for small subsets of the data (e.g. for 9 matrices, 9*9 - 9 = 72 calls are made in ~1 s, 870 calls in ~2.5 s).
However, operating on all the data requires almost 25 million calls.
I have also tried using deal() to make a cell array composed entirely of the next element in data, so I could use cellfun() in a single loop:
# who(), load() and struct2cell() calls place k data matrices in a 1D cell array called data.
nextData = cell(k,1);
for i=1:k
[nextData{:}] = deal(data{i});
H{:,i} = cellfun(#compare,data,nextData,'UniformOutput',false);
end
Unfortunately, this is not really any faster, because all the time is in compare(). Both of these code examples seem ill-suited for parallelization. I'm having trouble figuring out how to make my variables sliced.
compare() is totally vectorized; it uses matrix multiplication and conv2() exclusively (I am under the impression that all of these operations, including the cellfun(), should be multithreaded in MATLAB?).
Does anyone see a (explicitly) parallelized solution or better vectorization of the problem?
Note
I realize both my examples are inefficient - the first would be twice as fast if it calculated a triangular cell array, and the second is still calculating the self comparisons, as well. But the time savings for a good parallelization are more like a factor of 16 (or 72 if I install MATLAB on everyone's machines).
Aside
There is also a memory issue. I used a couple of evals to append each column of H into a file, with names like H1, H2, etc. and then clear Hi. Unfortunately, the saves are very slow...
Does
compare(a,b) == compare(b,a)
and
compare(a,a) == 1
If so, change your loop
for i=1:numel(list)
for j=1:numel(list)
...
end
end
to
for i=1:numel(list)
for j= i+1 : numel(list)
...
end
end
and deal with the symmetry and identity case. This will cut your calculation time by half.
The second example can be easily sliced for use with the Parallel Processing Toolbox. This toolbox distributes iterations of your code among up to 8 different local processors. If you want to run the code on a cluster, you also need the Distributed Computing Toolbox.
%# who(), load() and struct2cell() calls place k data matrices in a 1D cell array called data.
parfor i=1:k-1 %# this will run the loop in parallel with the parallel processing toolbox
%# only make the necessary comparisons
H{i+1:k,i} = cellfun(#compare,data(i+1:k),repmat(data(i),k-i,1),'UniformOutput',false);
%# if the above doesn't work, try this
hSlice = cell(k,1);
hSlice{i+1:k} = cellfun(#compare,data(i+1:k),repmat(data(i),k-i,1),'UniformOutput',false);
H{:,i} = hSlice;
end
If I understand correctly you have to perform 5000^2 matrix comparisons ? Rather than try to parallelise the compare function, perhaps you should think of your problem being composed of 5000^2 tasks ? The Matlab Parallel Compute Toolbox supports task-based parallelism. Unfortunately my experience with PCT is with parallelisation of large linear algebra type problems so I can't really tell you much more than that. The documentation will undoubtedly help you more.