Create a stored procedure in PostgreSQL that is never rolled back? - postgresql

From the PostgreSQL 9.0 manual:
Important: To avoid blocking concurrent transactions that obtain
numbers from the same sequence, a nextval operation is never rolled
back; that is, once a value has been fetched it is considered used,
even if the transaction that did the nextval later aborts. This means
that aborted transactions might leave unused "holes" in the sequence
of assigned values. setval operations are never rolled back, either.
So, how can I create a PL\PgSQL function with the same behaviour: "operation is never rolled back"?
In a call like this, whatever the function changes will NOT be rolled back:
BEGIN;
SELECT composite_nextval(...);
ROLLBACK;

You can use a savepoint after selecting composite_nextval. Then, just rollback to that savepoint and commit the rest.
Something like this:
BEGIN;
SELECT composite_nextval(...);
SAVEPOINT my_savepoint;
INSERT INTO some_table(a) VALUES (2);
ROLLBACK TO SAVEPOINT my_savepoint;
COMMIT;
This way, select composite_nextval(...) will be committed, but insert into some_table will not.

Related

Can postgres insert triggers and/or check be ran without inserting

I would love to be able to validate objects representing table rows using the database's existing constraints (triggers that raise exceptions and checks) without actually inserting them into the database.
Is there currently a way one could do this in postgres? At least with BEFORE INSERT triggers and CHECK, I assume it makes no sense with AFTER INSERT triggers.
The easiest way I can think or right now would be to:
Lock the table
Insert a new row
If exception raise to the API / else DELETE the row and call it valid
Unlock
But I can see several issues with this.
A simpler way is to insert within a transaction and not commit:
BEGIN;
INSERT INTO tbl(...) VALUES (...);
-- see effects ...
ROLLBACK;
No need for additional locking. The row is never visible to any other transaction with default transacton isolation level READ COMMITTED. (You might be stalling concurrent writes that confict with the tested row.)
Notable side-effect: Sequences of serial or IDENTITY columns are advanced even if the INSERT is never committed. But gaps in sequential numbers are to be expected anyway and nothing to worry about.
Be wary of triggers with side-effects. All "transactional" SQL effects are rolled back, even most DDL commands. But some special operations (like advancing sequences) are never rolled back.
Also, DEFERRED constraints do not kick in. The manual:
DEFERRED constraints are not checked until transaction commit.
If you need this a lot, work with a copy of your table, or even your database.
Strictly speaking, while any trigger / constraint / concurrent event is allowed, there is no other way to "validate objects" than to insert them into the actual target table in the actual target database at the actual point in time. Triggers, constraints, even default values, can interact with the current state of the whole DB. The more possibilities are ruled out and requirements are reduced, the more options we might have to emulate the test.
CREATE FUNCTION validate_function ( )
RETURNS trigger LANGUAGE plpgsql
AS $function$
DECLARE
valid_flag boolean := 't';
BEGIN
--Validation code
if valid_flag = 'f' then
RAISE EXCEPTION 'This record is not valid id %', id
USING HINT = 'Please enter valid record';
RETURN NULL;
else
RETURN NEW;
end if;
END;
$function$
CREATE TRIGGER validate_rec BEFORE INSERT OR UPDATE ON some_tbl
FOR EACH ROW EXECUTE FUNCTION validate_function();
With this function and trigger you validate inside the trigger. If the new record fails validation you set the valid_flag to false and then use that to raise exception. The RETURN NULL; is probably redundant and I am not sure it will be reached, but if it is it will also abort the insert or update. If the record is valid then you RETURN NEW and the insert/update completes.

How do you handle error handling and commits in Postgres

I am using Postgres 13.5 and I am unsure how to combine commit and error handling in a stored procedure or DO block. I know that if I include the EXCEPTION clause in my block, then I cannot include a commit.
I am new to Postgres. It has also been over 15 years since I have written SQL that was working with transactions. When I was working with transactions I was using Oracle and recall using AUTONOMOUS_TRANSACTION to resolve some of these issues. I am just not sure how to do something like that in Postgres.
Here is a very simplified DO block. As I said above, I know that the Commits will cause the procedure to throw and exception. But, if I remove the EXCEPTION clause, then how will I trap an error if it happens? After reading many things, I still have not found a solution. So, I am not understanding something that will lead me to the solution.
Do
$$
DECLARE
v_Start timestamptz;
v_id integer;
v_message_type varchar(500);
Begin
select current_timestamp into start;
select q.id, q.message_type into (v_id, v_message_type) from message_queue;
call Load_data(v_id, v_message_type);
commit; -- if Load_Data completes successfully, I want to commmit the data
insert into log (id, message_type, Status, start, end)
values (v_id, v_message_type, 'Success', v_start, Currrent_Timestamp);
commit; -- commit the log issert for success
EXCEPTION
WHEN others THEN
insert into log (id, message_type, status, start, end, error_message)
values (v_id, v_message_type, 'Failue', v_start, Currrent_Timestamp, SQLERRM || '', ' ||
SQLSTATE );
commit; -- commit the log insert for failure.
end;
$$
Thanks!
Since this is a pattern that I will have to do tens of times, I want to understand the right way to do this.
Since you cannot use transaction management statements in a subtransaction, you will have to move part of the processing to the client side.
But your sample code doesn't need any transaction management at all! Simply remove all the COMMIT statements, and the procedure will work just as you want it to. Remember that PostgreSQL uses the autocommit mode, so your procedure call from the client will automatically run in its own transaction and commit when it is done.
But perhaps your sample code is simplified, and you would like more complicated processing (looping etc.) in your actual use cases. So let's discuss your options:
One option is to remove the EXCEPTION handler and move only that part to the client side: if the procedure causes an error, roll back and insert a log message. Another, perhaps cleaner, method is to move the whole transaction management to the client side. In that case, you would replace the complete procedure with client code and call load_data directly from client code.

When is nextval evaluated in transactional writes?

If I have a sequence 'foo' in postgres, and do something like the following:
begin;
insert into ... values (nextval('foo'));
commit;
Is nextval evaluated on commit? In other words, if I only do such writes to that column, will it be visible as monotonically increasing, or is there a race there?
The docs make very clear that sequences are non-transactional, but not whether they could be used to order writes this way.
If yes, what about this?
begin;
select nextval('foo'); -- save the value
insert into ... values (<saved value>);
commit;
nextval is executed immediately. Every call to nextval is guaranteed to return a unique number, even if several statements call it on the same sequence at the same time.
Nothing can go wrong with sequences!

What is a good way of rolling back a transaction in Postgres

I want to insert data into a table from a staging table but keep the data unchanged if an error happens.
What I have is a working happy path
Begin transaction;
DELETE FROM mytable;
INSERT INTO mytable SELECT * FROM mytable_staging ;
Commit transaction;
In case the insert statement is failing how can I rollback the transaction?
PostgreSQL transactions will roll back on error automatically, see this.
Atomicity − Ensures that all operations within the work unit are
completed successfully; otherwise, the transaction is aborted at the
point of failure and previous operations are rolled back to their
former state.
Consistency − Ensures that the database properly changes states upon a
successfully committed transaction.
Isolation − Enables transactions to operate independently of and
transparent to each other.
Durability − Ensures that the result or effect of a committed
transaction persists in case of a system failure.
You can rollback a Postgres transaction using the ROLLBACK [WORK | TRANSACTION] statement:
Begin transaction;
DELETE FROM mytable;
INSERT INTO mytable SELECT * FROM mytable_staging ;
Rollback transaction;
All the SQL commands are case-insensitive and the transaction part of the statement is optional, but I like to include it for clarity.

Are PostgreSQL functions transactional?

Is a PostgreSQL function such as the following automatically transactional?
CREATE OR REPLACE FUNCTION refresh_materialized_view(name)
RETURNS integer AS
$BODY$
DECLARE
_table_name ALIAS FOR $1;
_entry materialized_views%ROWTYPE;
_result INT;
BEGIN
EXECUTE 'TRUNCATE TABLE ' || _table_name;
UPDATE materialized_views
SET last_refresh = CURRENT_TIMESTAMP
WHERE table_name = _table_name;
RETURN 1;
END
$BODY$
LANGUAGE plpgsql VOLATILE SECURITY DEFINER;
In other words, if an error occurs during the execution of the function, will any changes be rolled back? If this isn't the default behavior, how can I make the function transactional?
PostgreSQL 12 update: there is limited support for top-level PROCEDUREs that can do transaction control. You still cannot manage transactions in regular SQL-callable functions, so the below remains true except when using the new top-level procedures.
Functions are part of the transaction they're called from. Their effects are rolled back if the transaction rolls back. Their work commits if the transaction commits. Any BEGIN ... EXCEPT blocks within the function operate like (and under the hood use) savepoints like the SAVEPOINT and ROLLBACK TO SAVEPOINT SQL statements.
The function either succeeds in its entirety or fails in its entirety, barring BEGIN ... EXCEPT error handling. If an error is raised within the function and not handled, the transaction calling the function is aborted. Aborted transactions cannot commit, and if they try to commit the COMMIT is treated as ROLLBACK, same as for any other transaction in error. Observe:
regress=# BEGIN;
BEGIN
regress=# SELECT 1/0;
ERROR: division by zero
regress=# COMMIT;
ROLLBACK
See how the transaction, which is in the error state due to the zero division, rolls back on COMMIT?
If you call a function without an explicit surounding transaction the rules are exactly the same as for any other Pg statement:
BEGIN;
SELECT refresh_materialized_view(name);
COMMIT;
(where COMMIT will fail if the SELECT raised an error).
PostgreSQL does not (yet) support autonomous transactions in functions, where the procedure/function could commit/rollback independently of the calling transaction. This can be simulated using a new session via dblink.
BUT, things that aren't transactional or are imperfectly transactional exist in PostgreSQL. If it has non-transactional behaviour in a normal BEGIN; do stuff; COMMIT; block, it has non-transactional behaviour in a function too. For example, nextval and setval, TRUNCATE, etc.
As my knowledge of PostgreSQL is less deeper than Craig Ringer´s I will try to give a shorter answer: Yes.
If you execute a function that has an error in it, none of the steps will impact in the database.
Also, if you execute a query in PgAdmin the same happen.
For example, if you execute in a query:
update your_table yt set column1 = 10 where yt.id=20;
select anything_that_do_not_exists;
The update in the row, id = 20 of your_table will not be saved in the database.
UPDATE Sep - 2018
To clarify the concept I have made a little example with non-transactional function nextval.
First, let´s create a sequence:
create sequence test_sequence start 100;
Then, let´s execute:
update your_table yt set column1 = 10 where yt.id=20;
select nextval('test_sequence');
select anything_that_do_not_exists;
Now, if we open another query and execute
select nextval('test_sequence');
We will get 101 because the first value (100) was used in the latter query (that is because the sequences are not transactional) although the update was not committed.
https://www.postgresql.org/docs/current/static/plpgsql-structure.html
It is important not to confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the similarly-named SQL commands for transaction control. PL/pgSQL's BEGIN/END are only for grouping; they do not start or end a transaction. Functions and trigger procedures are always executed within a transaction established by an outer query — they cannot start or commit that transaction, since there would be no context for them to execute in. However, a block containing an EXCEPTION clause effectively forms a subtransaction that can be rolled back without affecting the outer transaction. For more about that see Section 39.6.6.
In the function level, it is not transnational. In other words, each statement in the function belongs to a single transaction, which is the default db auto commit value. Auto commit is true by default. But anyway, you have to call the function using
select schemaName.functionName()
The above statement 'select schemaName.functionName()' is a single transaction, let's name the transaction T1, and so the all the statements in the function belong to the transaction T1. In this way, the function is in a single transaction.
Postgres 14 update: All statements written in between the BEGIN and END block of a Procedure/Function is executed in a single transaction. Thus, any errors arising while execution of this block will cause automatic roll back of the transaction.
Additionally, the ATOMIC Transaction including triggers as well.